Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2024

Supporting Information Enhancing Activity and Stability of RuO₂ as Bifunctional Catalyst Using Thermally Tuned α-MnO₂ Interlayer for Hydrogen Production

Shashwat Bishwanathan¹, Simran Kaur Oberoi¹, Maurya Gyanprakash², Prashant Kumar Gupta^{1*},

¹Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur Rajasthan-342030, India.

²Centre for Advanced Studies, AKTU, Jankipuram, Lucknow, Uttar Pradesh-226031, India

* Corresponding author: guptapk@iitj.ac.in

Figure S1: Cyclic Voltammetry of RuO_2 at different scan rates in the non-faradaic region for the calculation of C_{dl} and ECSA (a) In OER at a scan rate of 10, 20, 30, 40, and 50 mV/sec, (b) In HER at a scan rate of 5, 10, 50, 100, 150, 200, and 250 mV/sec

Double layer capacitance (C_{dl}) and Electrochemical Active sites (ECSA) Calculation:

1. Double Layer Capacitance (C_{dl}): The C_{dl} value is determined using the CV technique in the nonfaradaic area. It is computed using the formula: $I = C_{dl} \times v$, where v represents the sweep rate (mV/sec). The sweep rate ranges from 10-50 mV/sec for OER and 5-250 mV/sec for HER, as shown in Figure.

The current value is taken at 1.20 V vs. RHE for OER and 0.2 V vs. RHE for HER, and the slope of the I v/s v is double-layer capacitance (C_{dl}) for the corresponding electrodes.

2. Electrochemical Active Surface Area (ECSA): ECSA is calculated from the formula:

$$ECSA = C_{dl}/C_s$$
,

 $C_s = 40 \ \mu F/cm^2$ because of the planar geometry of the electrode and alkaline environment[1]

Substrate Pretreatment Procedure:

Carbon Paper – Carbon paper measuring 2×1 cm² was ultrasonicated in acetone for 60 minutes at a temperature of 50 °C, followed by cleaning with MilliQ water to eliminate the acetone and any extraneous substances. Subsequently, it undergoes a drying process for 3 hours at a temperature of 60 °C.

Nickel Foam- The nickel foam of identical dimensions was subjected to treatment with 3 M HCl, ethanol, acetone, and MilliQ water, each for a duration of 15 minutes. Subsequently, it undergoes a drying process in a vacuum oven for a duration of 12 hours.

Ink Preparation: After synthesizing α -MnO₂ in powdered form, the ink for drop casting was created by dispersing 5 mg of catalyst particles in 5 mL of isopropanol. In addition, the binder Nafion 117, with a weight of 20 μ L (5% by weight), was used. To prepare the RuO₂ ink, we combined 5 mg of heat-treated

RuO₂ with 5 mg of acetylene black. These were then dispersed in a combination of 90 μ L Nafion 117 and 700 μ L of a 1:1 ratio mixture of IPA and water. The mixture is sonicated for 1 hour before drop-casting. The ink for 20 wt% Pt/C was prepared using 5 mg of Pt/C added into 90 μ L Nafion 117 and 700 μ L of a 1:1 ratio mixture of IPA and water.

Membrane Preconditioning: The membrane is preconditioned by being kept in a 0.5 M NaCl solution for 24 hours at room temperature, then followed by storage in a 1 M KOH solution for an additional 24 hours at room temperature. Prior to use in the H cell electrolyzer, the membrane was cleaned many times with MilliQ water.

Figure S2: Contact angle measurement

Figure S3: LSV comparison of $RuO_2@400-\alpha-MnO_2$ and electrode prepared with mixing ink in the same composition of $400-\alpha-MnO_2$ and RuO_2

Figure S4: LSV comparison for the different mass ratios of $400-\alpha$ -MnO₂ and RuO₂ for preparing electrode of RuO₂@400-\alpha-MnO₂

Figure S5: (a) Magnified XRD peaks for (310) and (211) displacement, (b) Fast scan survey spectra, (c) XPS scan Mn 3s for α-MnO₂ and 400-α-MnO₂, (d) C 1s XPS scan for calibration

Figure S6: XPS spectra for Mn $2p_{3/2}$ for 400- α -MnO₂ and RuO₂@400- α -MnO₂

	Average Crystallite Size (nm) ^{\$}	d-spacing for (310) plane (A)	d-spacing for (211) plane (Å)	Lattice Constants (Å)	Cell Volume (Å ³)
a-MnO ₂	14.66	3.1097	2.3949	a=b=9.83; c=2.856	275.96
400- α- MnO ₂	14.16	3.0959	2.3876	a=b=9.79; c=2.848	273.25

Table S1: XRD outputs for $\alpha\text{-}MnO_2$ and $400\text{-}\alpha\text{-}MnO_2$

\$ - Nanocrystallite size calculated with Scherrer equation

	α-MnO ₂	400-α-MnO ₂	RuO ₂	$RuO_2@\alpha-MnO_2$	RuO ₂ @400-α-
					MnO ₂
Resistivity	0.61	0.53	0.81	1.03	0.54
(Ω/cm)					
Conductivity	1.64	1.88	1.24	0.97	1.83
(S-cm)					

Table S2: Resistivity and conductivity data obtained from Four probe Hall measurement instrument

Figure S7: Mass Activity plots; (a) OER at an overpotential of 500 mV, (b) HER at an overpotential of 350 mV

Figure S8: (a) Logarithmic of Adsorption Resistance, (b) Double Layer capacitance, and (c) Adsorption Capacitance Variation with Potential for OER Electrocatalysts. The blue dashed area shows the onset region for different samples.

Figure S9: (a) Nyquist plot at OCP obtained from EIS; inset represents the corresponding fitted circuit (b) Bode plot; variation of (c) Adsorption resistance and (d) Charge transfer resistance with potential

	C _{dl} at 0.5 V for OER	C _{dl} at -0.85 V for HER
RuO ₂	651 μF	4.14 mF
RuO2@a-MnO2	1020 μF	5.59 mF
RuO ₂ @400-α-MnO ₂	1370 μF	12.4 mF

 Table S3: Double Layer Capacitance (Cdl) calculated from EIS study. The potential value is taken in non-Faradaic regions and v/s Hg/HgO

Figure S10: Nitrogen adsorption-desorption isotherm

	MBET Surface Area*	Langmuir Surface Area ^{&}	BJH Surface Area [%]	BJH Pore Volume	
MnO ₂	47.178 m ² /g	75.115 m ² /g	$28.88 \text{ m}^2/\text{g}$	0.133 cc/g	
400-MnO ₂	43.712 m ² /g	69.78 m ² /g	27.08 m ² /g	0.136 cc/g	

Tabel S4: BET surface areas and Pore volume

- *- BET surface area through multi-point data
- &- BET surface area through Langmuir
- % BET Surface area through Barret-Joyner-Halenda (BJH) Method

(a)

(c)

(b)

Figure S11: AEM membrane-based H-Cell setup for full-cell performance test; (a) Hydrogen bubbling over $RuO_2@400-\alpha-MnO_2$ at the cathode, (b) H-Cell setup, (c) Hydrogen bubbling over $RuO_2@400-\alpha-MnO_2$ at the anode

Figure S12: (a) Fast bubble release from the $RuO_2@400-\alpha-MnO_2$ surface, (b) Large bubble formation over RuO_2 surface

Figure S13: Pre and Post stability test SEM images of RuO₂@400-α-MnO₂ electrode at a magnification of 2 μm, (a) Fresh RuO₂@400-α-MnO₂@carbon paper, (b) RuO₂@400-α-MnO₂@carbon paper after 20 hours OER stability test, (c) RuO₂@400-α-MnO₂@carbon paper after 20 hours HER stability test, (d) RuO₂@400-α-MnO₂@carbon paper after 40 hours OER stability test, (e) RuO₂@400-α-MnO₂@Nickel Foam after 40 hours OER stability test, (e) RuO₂@400-α-MnO₂@Nickel Foam after 40 hours HER stability test

Figure S14: Pre-stability elemental mapping for RuO₂@400-α-MnO₂

Figure S15: Elemental mapping image for RuO₂@400-α-MnO₂@carbon paper after 20 hours OER stability test

Figure S16: Elemental mapping image for RuO₂@400-α-MnO₂@carbon paper after 20 hours HER stability test

Figure S17: Elemental mapping image for RuO₂@400-α-MnO₂@Nickel Foam after 40 hours OER stability test

Figure S18: Elemental mapping image for RuO₂@400-α-MnO₂@Nickel Foam after 40 hours HER stability test

Figure S19: X-ray Diffraction pattern for (a) RuO₂@400-α-MnO₂@Carbon Paper pre and post-20 hours stability test used for half-cell study, (b) RuO₂@400-α-MnO₂@Nickel Foam after 40 hours of stability test used in the full-cell study

Figure S20: XPS spectra of Mn 2p for fresh RuO₂@400-α-MnO₂ and after OER, HER stability test

Catalyst	Loading	OER Tafal	HER	Cell Voltage	Stability	Membrane
	(mg/cm ²)	Iatei	Iaiei	$\frac{(a)}{\mathrm{mA/cm^2}}$	(nours)	
This Study	0.189	63.5	24.5	1.485	40	AEM
RuO ₂ @NiO[2]	0.2	50.5	31.7	1.5	12	without
$RuO_2@Co_3O_4[3]$	0.285	69	91	1.645	1000 cycle	without
Ru aerogel[4]	1	81	35	1.46	14	without
Ru/RuO ₂ @MoO ₂	0.416	65	50	1.54	40	with
[5]						
Ni@Ru[6]	0.35-	89.6	87.3	1.61		without
	0.40					
$NiRuO_{2-x}[7]$		66	34.4	1.6	20	with
Ru/Cu-doped	0.285	56	35	1.47	11	with
RuO ₂ [8]						
CoO_x -RuO ₂ [9]		69.6	42.1	1.49	48	without

REFERENCES:

- 1. McCrory, C.C.L., Jung, S., Peters, J.C., and Jaramillo, T.F. (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. *J. Am. Chem. Soc.*, **135** (45), 16977–16987.
- 2. Liu, J., Zheng, Y., Jiao, Y., Wang, Z., Lu, Z., Vasileff, A., and Qiao, S.Z. (2018) NiO as a Bifunctional Promoter for RuO2 toward Superior Overall Water Splitting. *Small*, **14** (16), 1–10.
- 3. Liu, H., Xia, G., Zhang, R., Jiang, P., Chen, J., and Chen, Q. (2017) MOF-derived RuO2/Co3O4 heterojunctions as highly efficient bifunctional electrocatalysts for HER and OER in alkaline solutions. *RSC Adv.*, 7 (7), 3686–3694.
- 4. Yan, S., Liao, W., Zhong, M., Li, W., Wang, C., Pinna, N., Chen, W., and Lu, X. (2022) Partially oxidized ruthenium aerogel as highly active bifunctional electrocatalyst for overall water splitting in both alkaline and acidic media. *Appl. Catal. B Environ.*, **307** (February), 121199.
- 5. Fan, Y., Zhang, X., Zhang, Y., Xie, X., Ding, J., Cai, J., Li, B., Lv, H., Liu, L., Zhu, M., Zheng, X., Cai, Q., Liu, Y., and Lu, S. (2021) Decoration of Ru/RuO2 hybrid nanoparticles on MoO2 plane as bifunctional electrocatalyst for overall water splitting. *J. Colloid Interface Sci.*, **604**, 508–516.
- 6. Wu, W., Wu, Y., Zheng, D., Wang, K., and Tang, Z. (2019) Ni@Ru core-shell nanoparticles on flower-like carbon nanosheets for hydrogen evolution reaction at All-pH values, oxygen evolution reaction and overall water splitting in alkaline solution. *Electrochim. Acta*, **320**, 134568.
- Chen, X., Song, J., Xing, Y., Qin, Y., Lin, J., Qu, X., Sun, B., Du, S., Shi, D., Chen, C., and Sun, D. (2023) Nickel-decorated RuO2 nanocrystals with rich oxygen vacancies for high-efficiency overall water splitting. *J. Colloid Interface Sci.*, 630 (1), 940–950.
- Yang, K., Xu, P., Lin, Z., Yang, Y., Jiang, P., Wang, C., Liu, S., Gong, S., Hu, L., and Chen, Q. (2018) Ultrasmall Ru/Cu-doped RuO2 Complex Embedded in Amorphous Carbon Skeleton as Highly Active Bifunctional Electrocatalysts for Overall Water Splitting. *Small*, 14 (41), 1–10.
- 9. Yu, T., Xu, Q., Qian, G., Chen, J., Zhang, H., Luo, L., and Yin, S. (2020) Amorphous CoOx-Decorated Crystalline RuO2Nanosheets as Bifunctional Catalysts for Boosting Overall Water Splitting at Large Current Density. *ACS Sustain. Chem. Eng.*, **8** (47), 17520–17526.