Ligand-specific bimetallic electrocatalyst for efficient oxygen evolution reaction at higher current density

Varsha K^a, Kiran G. K^b, Sutar Rani Ananda^a, Lokesh Koodlur Sannegowda^{c*}, Shambhulinga Aralekallu^{a*}

^aCentre for Research in Functional Materials (CRFM), JAIN (Deemed-to-be University), Jain Global Campus, Bengaluru 562112, Karnataka, India

b Department of Chemical Engineering, Quantum Nano Centre, University of Waterloo, N2L 3G1 Ontario, Canada

^c Department of Studies in Chemistry, Vijayanagara Sri Krishnadevaraya University, Vinayakanagara, Ballari-583105, India

*Corresponding authors: shambulinga.a@jainuniversity.ac.in; kslokesh@vskub.ac.in; slokesh@vskub.ac.in; kslokesh@vskub.ac.in; kslokesh@vskub.ac.in; kslokesh@vskub.ac.in; kslokesh@vskub.ac.in; mailto:kslokesh@vskub.ac.in; mailto:kslokesh@vskub.ac.in</a

Materials:

Nickel nitrate hexahydrate (Ni(NO₃)₂.6H₂O) purchased from Nice Chemicals (P) Ltd, cobalt (II) nitrate hexahydrate 98% purchased from AVRA and trimesic acid 95% from Sigma-Aldrich used as organic ligand for MOF synthesis, Nafion 5%, ethanol and DMF were purchased from local vendors and used without any further purification .

Material characterization

The X-ray diffraction (XRD) instrument with Cu K α radiation ($\lambda = 1.54$ Å) was used to analyze the crystalline nature of the electrocatalyst. Scanning electron microscopy (SEM, Model EVOLS15,) was used to examine the morphology of the electrocatalyst. X-ray photoelectron spectroscopy (XPS) (K-alpha, Thermo Scientific, USA) with Al K α radiation (1486.6 eV) was used for quantitative assessment of the elemental composition. Nitrogen physisorption experiments was carried out using BELSORP-mini II (Japan) instrument with N₂ gas to determine the BET surface

Pre-treatment of Carbon cloth:

The commercial carbon cloth was cut into a rectangular piece with a size of $1 \text{ cm} \times 1 \text{ cm}$ and treated with ethanol, acetone, and distilled water separately by ultrasonication for 15 mins and then dried at 60 °C in a hot air oven. The cleaned carbon cloth was used for modification.

Electrode Preparation:

The catalyst ink was prepared by dispersing 20 mg of NiCo t-MOF electrocatalyst in a mixed solution of 300 μ L of iso-propanol and 20 μ L of Nafion. The mixture was sonicated for about 30 min to form homogeneous slurry. Then, the catalyst ink (100 μ L) was coated on a pre-treated carbon cloth (area 1cm²) and dried at 60 °C for 2 h. The constructed working electrodes were used to evaluate the electrochemical activity using CV, LSV and EIS. The electrochemical measurements were carried out with CHI760E electrochemical workstation (CH Instruments) with a three-electrode cell at ambient conditions. The specimen (1cm*1cm), graphite rod and Hg/HgO were used as working, counter and reference electrodes respectively. The electrocatalytic activity was measured in 1M KOH electrolyte. The potential measured versus the Hg/HgO electrode was converted to reversible hydrogen electrode (RHE) according to the following equation.

 $E_{(RHE)} = E_{Hg/HgO} + E_{Hg/HgO}^{0} + 0.0592 * pH$

Faradaic Efficiency (FE) Calculation

Applied current density (j): 100 mAcm⁻²

Electrode area (A): 1 cm²

Time (t): 3600 seconds (1 hour).

Oxygen evolved (Δm): 0.45 g of oxygen is evolved during the reaction

Number of electrons per mole of $O_2(n)$: 4 (4-electron transfer OER reaction).

Faraday constant (F): 96485 Cmol⁻¹

Molar mass of oxygen (M_{O2}): 32 gmol⁻¹

Step-by-Step FE Calculation

1. Calculate the Total Current (I):

The total current (I) is the current density (j) multiplied by the electrode area (A):

$$I = j \times A = \left(100 \times 10^{-3} \frac{A}{cm^2}\right) \times 1cm^2 = 0.1 A$$

2. Calculate the Moles of O₂ Evolved:

The amount of oxygen evolved (($\Delta m = 0.45$ g) can be converted to moles of O2:

Moles of
$$O_2 = \frac{\Delta m}{M_{02}} = \frac{0.45 \ g}{32 \ g \ mol^{-1}} = 1.40625 \ \times \ 10^{-2} mol$$

3. Calculate the total charge passed:

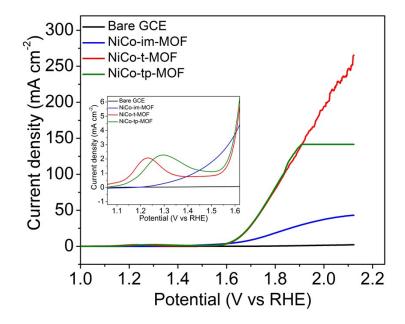
The total charge is given by:

$$Charge = I \times t = 0.1 A \times 3600 s = 360 C$$

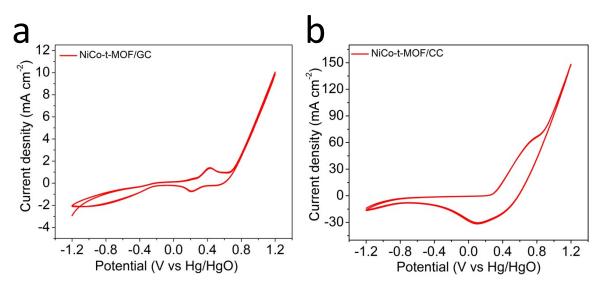
4. Calculate the Faradaic Efficiency:

Now, calculate the faradaic efficiency for O₂ using the following formula:

$$FE_{02} = \frac{4 \times I \times T}{n \times F \times \Delta m} \times 100$$


Substituting the values;

$$FE_{02} = \frac{4 \times 0.1 A \times 3600 s}{4 \times 96485 \ Cmol^{-1} \times 1.4065 \times 10^{-2} \ mol} \times 100$$


Simplifying;

$$FE_{02} = \frac{1440}{4 \times 96485 \times 1.40625 \times 10^{-2}} \times 100$$
$$FE_{02} = \frac{1440}{542.625} \times 100$$

$$FE_{02} = 92.7\%$$

Fig. S1. OER studies of Bare GCE, NiCo-im-MOF/GCE, NiCo-t-MOF/GCE and NiCo-tp-MOF/GCE at a scan rate of 5 mV/s in 1 M KOH solution. Inset: the zoomed portion shows the oxidation peaks of Ni^{2+} to Ni^{3+} and Co^{2+} to Co^{3+} in the potential of 1.2 to 1.4 V vs RHE

Fig. S2. Cyclic voltammogram of NiCo t-MOF on GCE and Carbon cloth (CC) in 1M KOH solution at the scan rate 50 mV/s.

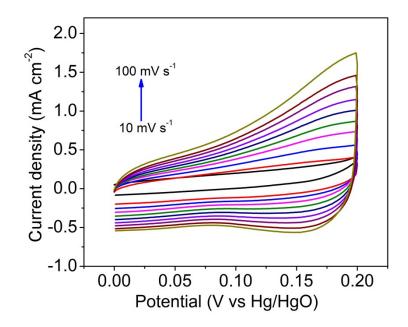


Fig. S3 CVs at different scan rates for NiCo-t-MOF in 1 M KOH solution

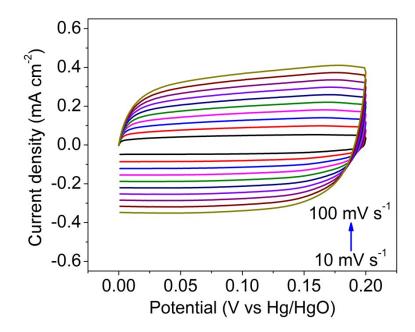
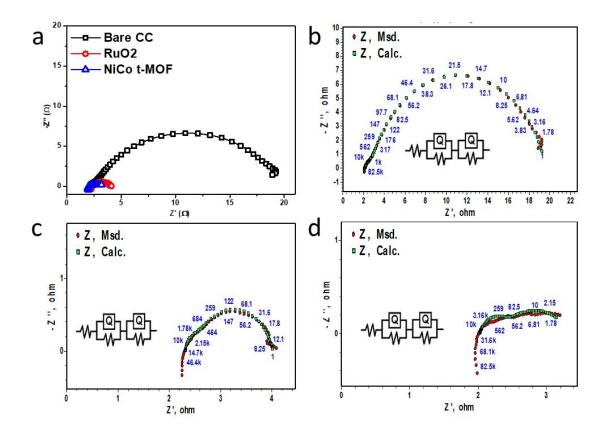



Fig. S4 CVs at different scan rates for RuO_2 in 1 M KOH solution.

Fig. S5(a) Cole-Cole (Nyquist) plot along with fitted curves and an equivalent circuit for (b) Bare CC, (c) RuO₂ and (d) NiCo-t-MOF

Compound	Equivalent circuit	R _s	Qg	R _g	Q_{gb}	R _{gb}	R _g + R _{gb}
Bare CC	R(QR)(QR)	2.133	0.952E-	16.8	0.387E-	0.6574	17.45
			3		3		
RuO ₂	R(QR)(QR)	2.313	3.317E-	1.481	0.396E-	0.2291	1.71
			3		3		
NiCo-t-	R(QR)(QR)	2.024	11.67	0.9849	2.704E-	0.3417	1.32
MOF		2.024	11.07	0.7047	3	0.3417	

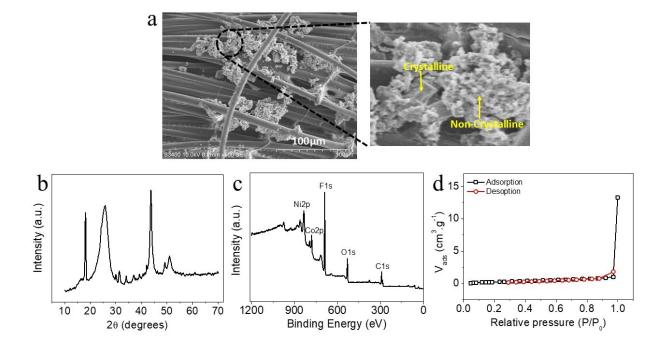


Fig S6.(a) SEM images, (b) XRD and (c) N₂ adsorption–desorption isotherms for NiCo-t-MOF after stability tests

Proposed possible OER mechanism with reference to NiCo-t-MOF

- 1. <u>Adsorption of hydroxide (OH-)</u> NiCo t-MOF-OH⁻ (adsorbed)
- Oxidation of hydroxide (OH⁻) to oxygen species (M-O)
 NiCo-t-MOF-OH⁻ (adsorbed) →NiCo-t-MOF-O(adsorbed) + e⁻
- 3. Coupling of oxygen species (M-O) to form O_2 2 NiCo-t-MOF-O(adsorbed) $\rightarrow O_2 + 2$ NiCo-t-MOF
- 4. Desorption of O₂ and regeneration of catalyst (desorbed from NiCo-t-MOF)

Overall OER reaction in alkaline medium

4 OH⁻ → $O_{2(g)}$ + 2H₂ $O_{(l)}$ +4 e⁻

Electrocatalyst	Overpotential	Tafel slope	Stability	Ref
	(η, mV@mA cm ⁻²)	(mV dec ⁻¹)		
Mn _x Fe _{3-x} O ₄	510 mV@100	-	10 h	1
Zn _{0.3} Co _{2.7} (PO ₄) ₂	390 mV@50	-	25 h	2
Co ₂ B	380 mV@10	45	-	3
NiO/NiCo ₂ O ₄	336 mV@50	93.2	40 h	4
NiCo alloy	390 mV @ 100	69.4	15 h	5
CoNiTe ₂ /NF	181 mV@10	44	24 h	6
Te/Fe-NiOOH	220 mV@10	93	20 h	7
CoTe@NR/NF	350 mV@100	75	24 h	8
Cu(OH) ₂ @Co	355 mV@100	70.2	20h	9
Ni ₃ Te ₂ –CoTe	392@100	68	24h	10
NiSe ₂	235 mV@10	63.1	80 h	11
NixPy-325	320 mV@10	72.2	60 h	12
NiCo-t-MOF/CC	440 mV@100	81	62 h	This work

Table S2. Comparison of the NiCo-t-MOF/CC with the reported catalyst materials

Table S3. OER electrocatalysts in the full-cell configuration water electrolyser where commercial Pt-based catalysts are used as cathodic HER electrocatalyst and designed catalysts used as the anodic OER electrocatalyst in the two-electrode configuration.

Cell configuration	Electrolyte	Cell voltage	Stability	Ref
Pt/C Ru@NiCo-MOF-4	1 М КОН	1.57 V @ 10 mA cm ⁻²	-	[13]
Pt/C RuO ₂	1 М КОН	1.62 V @ 10 mA cm ⁻²	-	[14]
Pt net NiO/NiCo ₂ O ₄ /NF	1 М КОН	1.67 V @ 20 mA cm ⁻²	30 h	[15]
Pt NiS/CoNC	1 М КОН	1.33 V@ 10 mA cm ⁻²	-	[16]
Pt/C 0.7Sr	4 M KOH	1.62 V @ 10 mA cm ⁻²	200 h	[17]
Pt/C NiCo-t-MOF	1 M KOH	1.49 V @ 10 mA cm ⁻²	30 h	This
				work

References

 Konno, Y.; Yamamoto, T.; Nagayama, T., Nanoporous manganese ferrite films by anodising electroplated Fe–Mn alloys for bifunctional oxygen electrodes. *Nanoscale* 2021,*13* (29), 12738-12749.

2. Kumar, R.; Inta, H. R.; Koppisetti, H. V. S. R. M.; Ganguli, S.; Ghosh, S.; Mahalingam, V., Electrochemical Reconstruction of Zn0.3Co2.7(PO4)2·4H2O for Enhanced Water Oxidation Performance. *ACS Applied Energy Materials* **2020**,*3* (12), 12088-12098.

3. Masa, J.; Weide, P.; Peeters, D.; Sinev, I.; Xia, W.; Sun, Z.; Somsen, C.; Muhler, M.; Schuhmann, W., Amorphous Cobalt Boride (Co2B) as a Highly Efficient Nonprecious Catalyst for Electrochemical Water Splitting: Oxygen and Hydrogen Evolution. *Advanced Energy Materials* **2016**,*6* (6), 1502313.

4. Liu, G.; Cheng, Y.; Qiu, M.; Li, C.; Bao, A.; Sun, Z.; Yang, C.; Liu, D., Facilitating interface charge transfer via constructing NiO/NiCo2O4 heterostructure for oxygen evolution reaction under alkaline conditions. *Journal of Colloid and Interface Science* **2023**,*643*, 214-222.

5. Zhang, B.; Zhang, X.; Wei, Y.; Xia, L.; Pi, C.; Song, H.; Zheng, Y.; Gao, B.; Fu, J.; Chu, P. K., General synthesis of NiCo alloy nanochain arrays with thin oxide coating: a

highly efficient bifunctional electrocatalyst for overall water splitting. *Journal of Alloys and Compounds* **2019**,797, 1216-1223.

6. Qian, G.; Mo, Y.; Yu, C.; Zhang, H.; Yu, T.; Luo, L.; Yin, S., Free-standing bimetallic CoNiTe2 nanosheets as efficient catalysts with high stability at large current density for oxygen evolution reaction. *Renewable Energy* **2020**,*162*, 2190-2196.

7. Ibraheem, S.; Li, X.; Shah, S. S. A.; Najam, T.; Yasin, G.; Iqbal, R.; Hussain, S.; Ding, W.; Shahzad, F., Tellurium Triggered Formation of Te/Fe-NiOOH Nanocubes as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. *ACS Applied Materials & Interfaces* **2021**,*13* (9), 10972-10978.

8. Yang, L.; Xu, H.; Liu, H.; Cheng, D.; Cao, D., Active Site Identification and Evaluation Criteria of In Situ Grown CoTe and NiTe Nanoarrays for Hydrogen Evolution and Oxygen Evolution Reactions. *Small Methods* **2019**,*3* (5), 1900113.

9. Wang, J.; Guo, Z.; Liu, M.; Wang, Y.; Liu, H.; Wu, L.; Xue, Y.; Cai, N.; Li, H.; Yu, F., CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries. *Renewable Energy* **2023**,*212*, 751-760.

10. Xu, J.; Yin, Y.; Xiong, H.; Du, X.; Jiang, Y.; Guo, W.; Wang, Z.; Xie, Z.; Qu, D.; Tang, H.; Deng, Q.; Li, J., Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. *Applied Surface Science* **2019**,*490*, 516-521.

11. Zhang, J.; Wang, Y.; Zhang, C.; Gao, H.; Lv, L.; Han, L.; Zhang, Z., Self-Supported Porous NiSe2 Nanowrinkles as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. *ACS Sustainable Chemistry & Engineering* **2018**,*6* (2), 2231-2239.

12. Li, J.; Li, J.; Zhou, X.; Xia, Z.; Gao, W.; Ma, Y.; Qu, Y., Highly Efficient and Robust Nickel Phosphides as Bifunctional Electrocatalysts for Overall Water-Splitting. *ACS Applied Materials & Interfaces* **2016**,*8* (17), 10826-10834.

13. Liu, D., et al., *3D Porous Ru-Doped NiCo-MOF Hollow Nanospheres for Boosting Oxygen Evolution Reaction Electrocatalysis.* Inorganic Chemistry, 2021. **60**(8): p. 5882-5889.

14. Qiu, T., et al., *Highly exposed ruthenium-based electrocatalysts from bimetallic metal-organic frameworks for overall water splitting.* Nano Energy, 2019. **58**: p. 1-10.

15. Liu, G., et al., *Facilitating interface charge transfer via constructing NiO/NiCo2O4 heterostructure for oxygen evolution reaction under alkaline conditions*. Journal of Colloid and Interface Science, 2023. **643**: p. 214-222.

16. Shi, M., et al., *MOF nanosheet array-derived NiS with Co, N-doped carbon layer: A highly efficient oxygen evolution electrocatalyst.* Ceramics International, 2023. **49**(5): p. 7613-7622.

17. Wei, R., et al., *Tuning the high-entropy perovskite as efficient and reliable electrocatalysts for oxygen evolution reaction*. RSC Advances, 2024. **14**(26): p. 18117-18125.