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Fig. S1 Linear sweep voltammograms of a series of Cu0.8Ag0.2GaS2 photocathodes prepared by various 
conditions for ZnS deposition. Open triangles indicate onset potentials. Electrolyte: 0.1 mol L−1 of an 
aqueous K2SO4 solution with phosphate buffer (pH7) saturated with 1 atm of N2 gas, light source: a 
300 W Xe-arc lamp with a cut-off filter (l > 420 nm). 
 
Comments on Fig. S1: 
For ZnS(NA)-CAGS, ZnS(473)-CAGS, ZnS(773)-CAGS, and ZnSO4-w/o-CAGS, their onsets were located at 
more positive potentials than that of CAGS. The point being similar to each other of these four samples was that 
the aqueous solution for CBD contained citric acid, ammonia, and thiourea. However, Citric acid(773)-CAGS, 
Ammonia(773)-CAGS, and Thiourea(773)-CAGS gave onsets at relatively negative potentials than that of 
CAGS. Onset of ZnSO4(773)-CAGS resembled that of CAGS. Although the onset potentials were affected by 
the difference in the condition of the CBD, relationship between the onset positions and the CBD conditions was 
somewhat unclear at the current stage. 
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Fig. S2 Auger spectra of Zn-LMM observed in an X-ray photoelectron spectroscopy of (a) a CAGS 
powder, (b) CAGS, (c) ZnSO4-w/o-CAGS, (d) ZnSO4(NA)-CAGS, (e) ZnS(NA)-CAGS, (f) 
ZnS(473)-CAGS, (g) ZnS(773)-CAGS, and (h) ZnSO4(773)-CAGS photocathodes and (i) ZnS, (j) 
ZnO, and (k) Zn(OH)2 powders. The intensities of ZnS, ZnO, and Zn(OH)2 are one twentieth of that 
of their raw data. The dash lines indicate the positions of Zn-LMM peaks of ZnS (989.5 eV), ZnO 
(988.0 eV), and Zn(OH)2 (986.7 eV), respectively.1 

 

Comments on Fig. S2: 
The intensities of Zn-LMM of (g) and (h) were not recognized despite post-modification with ZnS. 
This is most likely because of the low concentration of the Zn species in the surface by its diffusion 
through the annealing, as shown in Fig. S3.  
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Fig. S3 X-ray photoelectron spectra of Zn 2p of (A) CAGS, (B) ZnS(NA)-CAGS, (C) ZnSO4(NA)-
CAGS, (D) ZnS(473)-CAGS, (E) ZnS(773)-CAGS, and (F) ZnSO4(773)-CAGS photocathodes. Ar 
etching times: (a, e, i, m, q, and u) 0 s, (b, f, j, n, r, and v) 5 s, (c, g, k, o, s, and w) 20 s, (d, h, l, p, t, 
and x) 60 s. 
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Fig. S4 (A) X-ray diffraction patterns of Cu0.8Ag0.2GaS2 and (ZnS)2x-(Cu0.8Ag0.2GaS2)1-x solid-
solutions (x = 0.2 and 0.5) with references of CuGaS2 and ZnS. (B) Diffuse reflectance spectra of 
Cu0.8Ag0.2GaS2, (ZnS)2x-(Cu0.8Ag0.2GaS2)1-x solid-solutions (x = 0.2 and 0.5), and ZnS.  
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Fig. S5 Cross-sectional SEM-EDS analysis of a series of the ZnS-modified Cu0.8Ag0.2GaS2 
photocathodes. Note that peak intensities of Zn species in EDS were few. 
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Fig. S6 Analysis result of 13CO as a reduction product of 13CO2 reduction on an 
Ag/ZnS/Cu0.8Ag0.2GaS2 photocathode. Electrolyte: 0.1 mol L−1 of an aqueous K2SO4 solution saturated 
with 1 atm of 13CO2 gas, applied potential: −0.6 V vs. Ag/AgCl, light source: a 300 W Xe-arc lamp 
with a cut-off filter (l > 420 nm).  
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Table S1 Dependences of applied potentials and incident light densities on performances of 
Ag/ZnS/Cu0.8Ag0.2GaS2 photocathodes for CO2 reduction. 

Electrolyte: of 0.1 mol L−1 of an aqueous KHCO3 solution saturated with 1 atm of CO2 gas (pH was 
ca. 7), light source: a 300 W Xe-arc lamp with a cut-off filter (l > 420 nm) and ND filters. The 
photocurrent densities and Faradaic efficiencies were recorded at 3 h of the reaction time by similar 
experiment procedures to that of Fig. 5. 

  

Applied potential Reduction of the  Photocurrent density Faradaic efficiency (%) 
/ V vs RHE incident light density / µA cm−2 H2 CO 
+0.3 0% 320 75 23 
+0.3 50% 190 79 9 
+0.3 90% 100 95 16 
0 0% 690 78 22 
0 50% 620 71 23 
0 90% 360 69 27 

−0.4 0% 950 74 28 
−0.4 50% 690 72 18 
−0.4 90% 210 77 18 
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