Supporting Information

Layered Ammonium Metal Phosphate Based Heterostructure with Phosphate-Sulfide Interfacial Synergy for Efficient Oxygen Evolution and Urea Oxidation Reactions

Deepak Rajaram Patil^a, Santosh Patil^b, Harish S. Chavan^a, Ah-yeong Lee^a, Kiyoung Lee^{*a}

^aDepartment of Chemistry and Chemical Engineering, Inha University, 100 inha-ro, Michuhol-gu, 22212 Incheon, Republic of Korea

^bDr. Vishwanath Karad MIT World Peace University (MIT-WPU), Kothrud, Pune, 411038, India

Schematic I: Stepwise synthesis of $NH_4NiPO_4 \cdot H_2O$, $CdIn_2S_4/Ni_3S_2$, and $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_2$ heterostructure on Ni foam via a hydrothermal method, showcasing the sequential deposition and integration processes leading to a robust and synergistic heterostructure.

Figure S1 XRD patterns of (a) $NH_4NiPO_4 \cdot H_2O$, (b) $CdIn_2S_4/Ni_3S_4$ heterostructure and (c) $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure.

Figure S2 FESEM images of (a) $NH_4NiPO_4 \cdot H_2O$, (b) $CdIn_2S_4/Ni_3S_4$ and (c) $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure. (d) EDS data of $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure.

Figure S3 Cyclic voltammetry curves of $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure at 100 mV/s for (a) OER and (b) UOR.

TOF calculations: The following equation is used to calculate the value of TOF:

$$TOF = (j A) / (4 F n)$$
 (S1)

Here, *j* (mA cm⁻²) is the measured current density at a given potential, *A* is the surface area of the working electrode, 4 is the electron transfer number during O₂ production, and *n* is the number of moles of the active material and *n* is the Ni ions molar number calculated from CV curves using equation n = Q/F, *Q* is total charge calculated from the CV curve, *F* is the Faraday constant (F = 96485 C mol⁻¹).

Figure S4 Turnover frequency values (TOF) of (a) $NH_4NiPO_4 \cdot H_2O$, (b) $CdIn_2S_4/Ni_3S_4$ and (c) $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure. before and after OER and UOR activities.

a) Spectrum 1		
E	ement Wt%	Atomic %
	0.	00.00
Ni Ni Ni Ni	54.	15 33.22
0	22.	01 49.55
P C R C R C R C R C R C R C R C R C R C	10.	30 11.98
Cd	1.	03 0.33
	11.	27 3.54
S S S	1.	23 1.39
SE 08-Oct-24 WD15.0mm 15.0kV x10k 5um	Total 1	00 100
(b) Spe	ctrum 1	
(b) Spe	ement Wt%	Atomic %
(b) El	ertrum 1 ement Wt% 0.	Atomic % 00 0.00
(b) El N Ni	ement Wt% 0. 50.	Atomic % 00 0.00 43 25.91
(b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Wt% ement Wt% 0. 50. 36. 36.	Atomic % 00 0.00 43 25.91 56 68.92
(b) (b) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Wt% ement Wt% 0. 0. 50. 36. 1. 1.	Atomic % Atomic % 00 0.00 43 25.91 56 68.92 23 1.20
(b) E C C C C C C C C C C C C C	Wt% 0. 50. 36. 1. 3.	Atomic % Atomic % 00 0.00 43 25.91 56 68.92 23 1.20 81 1.02
(b) (b) (c) (c) (c) (c) (c) (c) (c) (c	Wt% ement Wt% 0. 50. 36. 1. 3. 6.	Atomic % Atomic % 00 0.00 43 25.91 56 68.92 23 1.20 81 1.02 69 1.76
(b) (c) (c) (c) (c) (c) (c) (c) (c	Wt% ement Wt% 0. 50. 36. 11. 3. 6. 1. 1.	Atomic % 00 0.000 43 25.91 56 68.92 23 1.20 81 1.02 69 1.76 28 1.20

Figure S5 FESEM images and EDS data of $NH_4NiPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure after (a) OER and (b) UOR.

Figure S6. Raman spectra of $NH_4CoPO_4 \cdot H_2O/CdIn_2S_4/Ni_3S_4$ heterostructure before and after OER and UOR activities.

Figure S7. EDX mapping images from TEM of NPO/CINS heterostructure (a) NPO phase and (b) CINS phase.