Supplementary Information (SI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2025

Supplementary Information for:

Copper(I) Bis(diimine) Sensitized Titania Nanotube Array Photoelectrodes for Photoelectrochemical Water Oxidation

Joseph D. Chiong^{1,2}, Zujhar Singh¹, Joseph F. Ricardo-Noordberg¹, Nhat Truong Nguyen^{2*},

Marek B. Majewski^{1*}

1. Department of Chemistry and Biochemistry and Centre for NanoScience Research

Concordia University 7141 Sherbrooke Street West, Montreal, Quebec, Canada, H4B 1R6

2. Department of Chemical and Materials Engineering 1455 De Maisonneuve Boulevard

West, Montreal, Quebec, Canada, H3G 1M8

E-mail: marek.majewski@concordia.ca; truong.nguyen@concordia.ca

Contents

Scheme S1. SOA setup using a custom-made electrochemical cell	S4
Figure S1. ¹ H NMR spectrum of [Cp*Ir(pyalc)OH] in CDCl ₃	S4
Figure S2. Schematic and picture of collector-generator assembly	S5
Scheme S2. Expected morphology of the TiO ₂ NTs photoelectrode. The working surface for functionalization is the nanotube mouths composed of the initiation layer and inner tube wall	S5
Figure S3. Pore aperture diameter distribution and nanotube length distribution	S6
Figure S4. Pictures of TiO ₂ NTs photoelectrode	S6
Figure S5. SEM micrograph of TiO ₂ NTs and elemental maps of titanium and oxygen	S7
Figure S6. XPS high resolution scan of TiO ₂ NTs in the titanium binding energy region	S8
Figure S7. XPS high resolution scan of TiO ₂ NTs in the oxygen binding energy region	S8
Figure S8. XPS binding energy of nitrogen in TiO ₂ NTs	S9
Figure S9. XPS high resolution scan of TiO ₂ NTs in the carbon binding energy region	S9
Figure S10. Photocurrent normalization to nanotube length	. S10
Figure S11. ¹ H NMR spectrum of A-Cu(I)-D	.S11
Figure S12. DRIFTS analysis of TiO ₂ NTs baselined against Ti foil	. S12
Figure S13. HAADF and elemental mapping of TiO ₂ NTs	. S13
Figure S14. HAADF and elemental mapping of TiO ₂ NTs A-Cu(I)-D	. S14
Figure S15. Electrochemical testing of TiO2 NTs	. S15
Figure S16. Chronoamperogram of CoOx photoelectrochemical deposition	. S16
Scheme S3. Proposed energy level diagram for TiO ₂ NTs A-Cu(I)-D with the presence of WO	C . S16
Figure S17. UV-Vis of [Cp*Ir(pyalc)OH] in	.S17
Figure S18. HAADF and elemental mapping of TiO2 NTs CoOx.	. S18
Figure S19. Chopped-light chronoamperogram of TiO ₂ NTs A-Cu(I)-D with the addition of sacrificial electron donor TEOA.	. S19
Figure S20 Chronoamperometry experiment of TiO2 NTs A-Cu(I)-D over the period of 1 hour	. S19
Figure S21. Photocurrent ratios of photocurrent in the absence and presence of [Cp*Ir(pyalc)OH]	. S20
Figure S22. Chopped-light chronoamperogram of photoanodes with CoOx	. S20
Scheme S4. Photoaction scheme	.S21
Figure S23. TiO ₂ NTs A-Cu(I)-D illuminated with an Oriel Corp 77503 Fiber Optic Illuminator	. S22
Figure S24. Photoaction spectra of TiO ₂ NTs and TiO ₂ NTs A-Cu(I)-D.	. S22
Figure S25. Single LEDs Chopped-light chronoamperometry experiment on TiO ₂ NTs	. S23
Table S1. IPCE% of TiO ₂ NTs	. S24

Table S2. IPCE% of of TiO ₂ NTs A-Cu(I)-D	S24
Figure S26. Collector-generator dual working electrode experiments	S25
Figure S27. Faradaic efficiency calculation	S26
Figure S28. A-Cu(I)-D loading calculation on TiO ₂ NTs	S27

Scheme S1. Self-organized electrochemical anodization (SOA) setup using a custom-made electrochemical cell.

Figure S1. ¹H NMR spectrum of [Cp*Ir(pyalc)OH] in CDCl₃ recorded on a 300 MHz Bruker spectrometer

Figure S2. (A) Schematic and (B) picture of collector-generator assembly.

Scheme S2. Expected morphology of the TiO_2 NTs photoelectrode. The working surface for functionalization is the nanotube mouths composed of the initiation layer and inner tube wall.

Figure S3. (A) Pore aperture diameter distribution from 2 measurements per pore for 181 nanotubes and (B) Nanotube length distribution measured from 107 nanotubes across 4 array fragments using ImageJ.

Figure S4. Pictures of TiO₂ NTs photoelectrode from resulting anodization and annealing.

Figure S5. SEM micrograph of TiO₂ NTs and elemental maps of titanium and oxygen.

Figure S6. XPS high resolution scan of TiO₂ NTs in the titanium binding energy region.

Figure S7. XPS high resolution scan of TiO₂ NTs in the oxygen binding energy region.

Figure S8. XPS binding energy of nitrogen in TiO₂ NTs.

Figure S9. XPS high resolution scan of TiO₂ NTs in the carbon binding energy region.

Figure S10. Photocurrent normalization to nanotube length. (A) Tube length measured by crosssectional SEM depending on anodization period, (B) Chopped-light chronoamperometry of TiO_2 NTs samples grown for periods of 15, 30, 45, 60, 90, 120, and 180 minutes. (C) and (D) Current density normalization at 0 V and 0.2 V over tube length associated to the sample. All experiments were conducted in aqueous 0.1 M Na₂SO₄ solution with the photoelectrode as working electrode, platinum mesh as counter electrode and a saturated calomel electrode as reference electrode.

Figure S11. ¹H NMR spectrum of A-Cu(I)-D in DMSO- d_6 recorded on a 500 MHz Varian spectrometer.

Figure S12. DRIFTS analysis of TiO₂ NTs baselined against Ti foil.

Figure S13. HAADF and elemental mapping of TiO₂ NTs.

Figure S14. HAADF and elemental mapping of TiO₂ NTs|A-Cu(I)-D.

Figure S15. OCP measurement (A) before and (B) after photoelectrochemical testing. (C) Chopped-light chronoamperometry experiments of amorphous TiO₂ NTs (yellow), anatase TiO₂ NTs (blue) and anatase TiO₂ NTs with triethylamine as a sacrificial electron donor (red) at 0 V vs SCE. (D) Chopped-light linear sweep voltammetry with and without addition of sacrificial electron donor TEA. Photoelectrochemical testing conducted in aqueous 0.1 M Na₂SO₄ pH 8.9 solution with the photoelectrode as a working electrode, platinum mesh as a counter electrode and a saturated calomel electrode as a reference electrode.

Figure S16. Chronoamperogram of CoOx photoelectrochemical deposition on (A) TiO_2 NTs photoelectrode and (B) TiO_2 NTs|A-Cu(I)-D photoelectrode. Conditions: Aqueous 0.5 mM $Co(NO_3)_2$ in 0.1 M pH 7 phosphate buffer (KPi) held at +0.2 V versus SCE under a white light emitting diode for 180 seconds. WE: 2 mm Pt button; RE: Ag wire; CE: Pt mesh. in

Scheme S3. Proposed energy level diagram for TiO₂ NTs|A-Cu(I)-D with the presence of WOCs using electrochemical potentials of all redox components. Anatase TiO₂ conduction band position is taken from Li *et al.*,¹ A-Cu(I)-D excited state and redox species are from our previous work,² CoOx regeneration position is taken from Jewell *et al.*,³ and [Cp*Ir(pyalc)OH] precursor transformation and water oxidation catalysis was taken from Sheehan *et al.*⁴ All potentials are reported at pH 7.

Figure S17. UV-Vis of [Cp*Ir(pyalc)OH] in aqueous 0.1 M Na₂SO₄ pH 8.9 solution used for photoelectrochemistry.

Figure S18. HAADF and elemental mapping of TiO₂ NTs|CoOx.

Figure S19. Chopped-light chronoamperogram of $TiO_2 NTs|A-Cu(I)-D$ with the addition of sacrificial electron donor TEOA. Photoelectrochemical testing conducted in aqueous 0.1 M Na₂SO₄ pH 8.9 solution with the photoelectrode as a working electrode, platinum mesh as a counter electrode and a saturated calomel electrode as a reference electrode.

Figure S20. Chronoamperometry experiment of $TiO_2 NTs|A-Cu(I)-D$ illuminated with a 540 mW/cm² single white LED over the period of 1 hour. Photoelectrochemical testing conducted in aqueous 0.1 M Na₂SO₄ pH 8.9 solution with the photoelectrode as a working electrode, platinum mesh as a counter electrode and a saturated calomel electrode as a reference electrode.

Figure S21. Photocurrent ratios of photocurrent at the beginning of light on versus at the end of light on in the absence (Orange) and presence (Yellow) of [Cp*Ir(pyalc)OH].

Figure S22. Chopped-light chronoamperogram at 0 V vs SCE of photoanodes with CoOx photoelectrochemically deposited. Photoelectrochemical testing conducted in aqueous 0.1 M Na_2SO_4 pH 8.9 solution with the photoelectrode as a working electrode, platinum mesh as a counter electrode and a saturated calomel electrode as a reference electrode.

Scheme S4. Photoaction scheme. Photocurrent originating from A-Cu(I)-D decorated on the initiation layer using low power density light source and photocurrent generated using high power density light source originating from graphitic carbon and/or graphitic nitrides incorporated in the inner tube wall.

Figure S23. TiO₂ NTs|A-Cu(I)-D with an applied potential of (A) 0 V and (B) 0.2 V vs SCE illuminated with an Oriel Corp 77503 Fiber Optic Illuminator as light source with $< 1 \text{ mW/cm}^2$ power density. TiO₂ NTs with an applied potential of (C) 0 V and (D) 0.2 V vs SCE was used as control. WE: Photoanode; Ref.: Saturated calomel electrode; CE: Pt mesh; Electrolyte solution: aqueous 0.1 M Na₂SO₄ pH 8.9.

Figure S24. Photoaction spectra of (A) TiO₂ NTs and (B) TiO₂ NTs|A-Cu(I)-D.

Figure S25. Single LEDs Chopped-light chronoamperometry experiment on TiO_2 NTs with an applied potential of (A) 0 V and (B) 0.2 V vs SCE illuminated with a 65 mW/cm² single blue LED (475 nm), a 92 mW/cm² single green LED (530 nm) and a 104 mW/cm² single red LED (730 nm). Ti Foil with an applied potential of (C) 0 V and (D) 0.2 V vs SCE was used as control. WE: Photoanode; Ref.: Saturated calomel electrode; CE: Pt mesh; Electrolyte solution: aqueous 0.1 M Na₂SO₄ pH 8.9.

Wavelength (nm)	IPCE % of TiO ₂ NTs at 0 V	IPCE % of TiO ₂ NTs at 0.2 V
475	2.29	3.66
530	0.02	0.51
730	0.00	0.09

Table S1. IPCE% of TiO₂ NTs

Wavelength (nm)	IPCE % of TiO ₂ NTs A-Cu(I)-D at 0 V	IPCE % of TiO ₂ NTs A-Cu(I)-D at 0.2 V
480	1.02	1.21
520	0.76	0.88
560	0.16	0.44
600	0.05	0.20
640	0.00	0.09
680	0.00	0.04

Table S2. IPCE% of TiO2 NTs|A-Cu(I)-D

Figure S26. Collector-generator dual working electrode experiment on (A) $TiO_2 NTs$, (B) $TiO_2 NTs|A-Cu(I)-D$, (C) $TiO_2 NTs|A-Cu(I)-D|CoOx$ and (D) $TiO_2 NTs + 0.1134 \text{ mM} [Cp*Ir(pyalc)OH]$ in aqueous 0.1 M Na₂SO₄ pH 8.9. The generator electrode was held at 0.2 V and illuminated with white light. The collector electrode was held at -0.6 V. Reference electrode: saturated calomel electrode. Counter electrode: platinum mesh.

Photoanode (MOx PS WOC or + WOC)	Faradaic Efficiency (%) 100-400s (Baseline 1)	Faradaic Efficiency (%) 100-400s (Baseline 1) + 400-700s (Baseline 2)
TiO ₂ NTs A-Cu(I)-D CoOx	11	13
TiO ₂ NTs	15	15
TiO ₂ NTs + 0.1134 mM [Cp*Ir(pyalc)OH]	29	44
TiO ₂ NTs A-Cu(I)-D	27	32
TiO ₂ NTs A-Cu(I)-D + 0.0081 mM [Cp*Ir(pyalc)OH]	84	99
TiO ₂ NTs A-Cu(I)-D + 0.1134 mM [Cp*Ir(pyalc)OH]	64	82

 Q_{gen} and Q_{col} are given by integrating the area between the respective current generated and the baseline.

Example given for TiO₂ NTs|A-Cu(I)-D + 0.0081 mM [Cp*Ir(pyalc)OH]:

 $Q_{gen} = 7814 \, \mu C$

$$Q_{col} = 4572 \, \mu C$$

 $\eta_{coleff} = 70\% = 0.7$

$$\eta_{O_2} = \left(\frac{Q_{col}}{Q_{gen}}\right) \left(\frac{1}{\eta_{coleff}}\right) = \left(\frac{4572 \ \mu C}{7814 \ \mu C}\right) \left(\frac{1}{0.7}\right) = 0.8359 = 84\%$$

Figure S27. Faradaic efficiency calculation.

Figure S28. A-Cu(I)-D loading calculation on TiO₂ NTs.

References

- 1.Li, F.; Fan, K.; Xu, B.; Gabrielsson, E.; Daniel, Q.; Li, L.; Sun, L., J. Am. Chem. Soc., 2015, 137, 9153–9159.
- 2. Z. Singh, S. Kamal and M. B. Majewski, J. Phys. Chem. C, 2022, 126, 16732-16743.
- 3. C. F. Jewell, A. Subramanian, C.-Y. Nam and R. G. Finke, ACS Appl. Mater. Interfaces, 2022, 14, 25326–25336.
- 4. S. W. Sheehan, J. M. Thomsen, U. Hintermair, R. H. Crabtree, G. W. Brudvig and C. A. Schmuttenmaer, *Nat. Commun.*, **2015**, *6*, 6469.