Supporting Information

Enhanced Ketonic Decarboxylation of Fatty Acids using Vanadiamodified Ni/ZrO₂ Catalyst

Sibongile Pikoli^a, Avela Kunene^a and Banothile C.E. Makhubela^{a*}

^aResearch Centre for Synthesis and Catalysis, Department of Chemical Science, University of Johannesburg, Auckland Park 2006, South Africa

*Corresponding author: <u>bmakhubela@uj.ac.za</u>

Fig. S1: FT-IR spectra of TOFA and TOFAME.

Fig. S2: TOFAME GC-FID graph.

Fig. S3: TEM images, particle size distribution, and SAED images of (a) ZrO_2 , (b)Ni/ ZrO_2 , and (c) V-Ni/ ZrO_2 .

Fig. S4: ¹H NMR spectral overlay highlighting characteristic ketone signals for self-ketonization products, nonadecanone and acetone, at (a) 250 °C for 5 h, (b) 300 °C for 5 h, and (c) 350 °C for 5 h.

Fig. S5: GC-FID data of TOFA deoxygenation over NiO catalyst at 350 °C/5 h.

Fig. S6: Product profile of TOFA deoxygenation over ZrO₂ support at 350 °C/5 h.

Fig. S7: GC-MS data of TOFA deoxygenation over the V-NiZrO₂ catalyst at 350 °C/15 h.

Entry	Compound	Retention Time (min)
1	Dodecane, C ₁₂ (solvent)	4.34
2	Tridecane, C ₁₃	5.11
3	Tetradecane, C ₁₄	6.50
4	1-Tetradecene, C ₁₄	7.13
5	Pentadecane, C ₁₅	7.90
6	1-Pentadecene, C ₁₅	8.48
7	Hexadecane, C ₁₆	9.17
8	7-Hexadecene, C ₁₆	9.92
9	Heptadecane, C ₁₇	10.40
10	Octadecane, C ₁₈	11.61
11	Octadecene, C ₁₈	12.12
12	15-Heptadecenal, C ₁₂	12.24
13	5-Octadecene	12.42
14	1-Nonadecene	12.25
15	3-Undecene-2-methyl	13.98
16	2-Nonadecanone	21.67
17	Stearic acid	29.90
18	Oleic acid	30.44
19	17-Pentatriacontene	30.49

Table S1: GC	-MS product	assignments.
--------------	-------------	--------------

Entry	Catalyst	Feedstock	Conditions	Conversion	C ₁₇	C ₁₈	Ref.
				(%)	(%)	(%)	
1	1%Pd/C	TOFA	350 °C, 5.5 h,	59	91	-	1
			H₂ atm.				
2	80%NiZrN/U	SO	350 °C, 2 h, N ₂	99	35	-	2
			atm.				
3	lr-	WCO	180 °C, 18 h,	82	-	69	3
	ReOx/SiO ₂		20 bar H ₂ .				
4	5%Pd/C	FAME	340 °C, 6 h,	95	87	9	4
			25 bar H_2 .				
5	10%Mo/γ-	OA	375 °C, 4 h,	91	18	-	5
	Al ₂ O ₃		hydrothermal.				
6	30% Ni/ZrO ₂	OA	350 °C, 3 h.	100	23	-	6
7	10% Ni/ZrO ₂	TOFA	350 °C, 5 h,	90	20	8	This work
			10 bar H ₂ &				
			FA.				
8	2%V-	TOFA	350 °C, 5 h,	94	30	9	This work
	8%Ni/ZrO ₂		10 bar H ₂ &				
			FA.				
		1	1			1	

 Table S2: Comparable deoxygenation systems reported in literature.

References

- P. Mäki-Arvela, B. Rozmysłowicz, S. Lestari, O. Simakova, K. Eränen, T. Salmi and D. Y. Murzin, *Energy and Fuels*, 2011, 25, 2815–2825.
- 2 G. Zafeiropoulos, N. Nikolopoulos, E. Kordouli, L. Sygellou, K. Bourikas, C. Kordulis and A. Lycourghiotis, *Catalysts*, 2019, 9, 210.
- 3 S. Liu, T. Simonetti, W. Zheng and B. Saha, *ChemSusChem*, 2018, 11, 1446–1454.
- E. Meller, U. Green, Z. Aizenshtat and Y. Sasson, *Fuel*, 2014, 133, 89–95.
- 5 M. Z. Hossain, M. B. I. Chowdhury, A. K. Jhawar, W. Z. Xu, M. C. Biesinger and P. A. Charpentier, *ACS Omega*, 2018, 3, 7046–7060.
- Z. Zhang, H. Chen, C. Wang, K. Chen, X. Lu, P. Ouyang and J. Fu, *Fuel*, 2018, 230, 211–217.