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I. CROSS-SECTIONS OF ACTIVE ELASTIC SHELLS

FIG. SI.1. Cross-sections of active elastic shells at vp = 10 (top row) and vp = 100 (bottom row). The perspectives are along
three orthogonal axis. The elastic constants are K = 160 kBT0/σ

2 and κ = 10 kBT0 and the size of the amorphous shell is
N = 12002.

II. DISCRETIZING THE LAPLACIAN OPERATOR TO IMPLEMENT BENDING ENERGY

When the shell is discretized using flat triangles, bending forces can be calculated using two methods - referred to
as Method A and B [1, 2]. For all numerical calculations, we implemented Method A where we calculate the angle
between normals of neighboring triangles (see Eq. 1 of the main text). To ensure that the collapse of normalized
volumes of the shells as a function of vp/(K

0.125κ0.5) is not a numerical artefact of our choice of using Method A, in
this section, we present some results where we calculate bending forces using Model B [2, 3]. For a membrane whose
local mean curvature at r is H(r), the height field is h(r) and the bending constant is κ̃, the Helfrich bending energy
is,

Ebend =
κ̃

2

∫
dAH(r)2 ≈ κ̃

2

∫
dA [∇2h(r)]2. (SI.1)

For a triangulated surface, whose node positions are denoted by ri, the discretized form of the Laplacian allows the
mean curvature at the ith vertex to be calculated as,

Hi =
1

σi
ni ·

∑
j

σij
rij
rij

, (SI.2)
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where index j denotes the neighboring vertices of i, rij = ri − rj , rij = |rij |, ni is the surface normal and σi is the
area of the virtual dual cell of vertex i,

σi =
1

4

∑
j

σijrij . (SI.3)

The length σij is,

σij =
rij
2
[cot(θ1) + cot(θ2)], (SI.4)

where θ1 and θ2 are opposing angles of the two triangles sharing the bond ij. See Fig. SI.2(a). The discretized
bending energy we use in our simulations is,

Ebend =
κ̃

2

∑
i

1

σi

ni ·
∑
j

σij
rij
rij

2

. (SI.5)

In Fig. SI.2(b), we see that the collapse of the normalized volumes as a function of vp/(K
0.125κ̃0.5) is retained despite

the use of an alternate implementation of bending energy.

FIG. SI.2. a) Sketch of two flat triangles sharing a bond. b) The elastic stretching constant K = 160 and the size of the
crystalline shell is N = 1922.

III. CRUMPLED ACTIVE SHELLS RESWELL ON REMOVAL OF ACTIVITY

Elastic shells buckle at high temperatures of T = 100T0, yet do not display a crumpled phase as we verified.
To check the stability of the crumpled phase at high temperatures, we use a crumpled configuration as the initial
configuration for a shell in a thermal bath of high temperature. Specifically, the initial configuration was generated by
subjecting the shell to active fluctuations of strength vp = 100 at T = T0 after which the activity was removed and
the temperature is increased to T = 100T0. The shell immediately reswells to a volume of V ≈ 0.6V0. See Fig. SI.3.
This suggests that a crumpled phase of the elastic shell is not stable even under these high temperatures.
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FIG. SI.3. Normalized volume V/V0 as a function of time depicting the reswelling of a crumpled configuration. The elastic
constants are K = 160 kBT0/σ

2 and κ = 10 kBT0 and the size of the amorphous shell is N = 1922.

IV. FINITE SIZE DEPENDENCE

A. Radius of gyration

At every self-propulsion speed vp, the radius of gyration Rg must scale with radius of spherical shell R as Rg(vp) ∼
Rν(vp) where the size exponent ν(vp) is numerically calculated in Fig. 4 of the main text. For vp = 100, the size
dependence of the radius of gyration is shown in Fig. SI.4 where the best fit for data is at ν(100) = 0.83± 0.03. The
error bar is the fitting error.

8

12

16

20

16 20 24 28

R
g

R

FIG. SI.4. At a self-propulsion speed of vp = 100, the radius of gyration of active crystalline shells scales with shell radii as
Rg ∼ Rν with ν = 0.83± 0.03. In this log-log plot, the dashed blue and red lines are for reference and show the size scaling of
the flat phase and compact phase respectively. The small error bars on the data are standard errors.

B. Normalized volumes

If the volume V (vp) of the shell is approximated as V (vp) ∼ R3
g(vp), then

V (vp)

V0
≈

R3
g(vp)

R3
= R3[ν(vp)−1]. (SI.6)
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For small self propulsion speeds, ν(vp)− 1 ≈ 0 and following Eq. SI.6, the normalized volume curves should exactly
overlap irrespective of size of the shell. See Fig. 1 of main text. With increasing vp, ν(vp)−1 monotonically decreases
as seen in Fig. 4 of main text. Thus, following Eq. SI.6, the normalized volumes V (vp)/V0 become more size dependent
with increasing vp. Correspondingly, the spread of the normalized volume curves of different sizes is seen to increase
with increasing vp as can be seen in Fig. 1 of the main text.

V. PRESSURE INDUCED COLLAPSE OF SHELLS

Passive shells can be collapsed with sufficient negative i.e. inward pressures. To find qualitative differences between
activity-induced collapse and pressure-induced collapse, we calculate the size exponent of shells that are collapsed
using negative pressures. For this elastic shell under the influence of pressure p, we perform Monte Carlo simulations
using the interaction potential,

Up = Ks

∑
<ij>

Θ(rij − l0) + κ
∑

<lm>

(1− ηl · ηm)− pV + 4 ε
∑
ij

[(
σ

rij

)12

−
(

σ

rij

)6

+
1

4

]
. (SI.7)

All variable definitions are as defined under Eq. 1 of the main text. The Heaviside step function Θ(x) = 1 for x ≥ 0
and zero otherwise while the constant Ks → ∞.
To collapse the shell, we use a large pressure p/pc = 200 for all sizes, where the critical pressure for buckling scales

with shell radius as pc ∼ 1/R2 [4]. With the shell in a thermal bath of temperature T = T0, we relax the shell until
the radius of gyration saturates to a constant value after which we calculate the average radius of gyration Rg. See
Fig. SI.5(a) shows the typical shape of highly compressed elastic shells. The scaling of the radius of gyration with
shell radii is Rg ∼ Rν with ν = 1.00 ± 0.03. The error bar is the fitting error. See Fig. SI.5(b) where we show the
averaged data for twenty independent runs. The shell despite its complete collapse scales linearly with shell radii in
contrast to active shells that remain in the crumpled phase at high self-propulsion speeds.

FIG. SI.5. a) Snapshot of a pressure collapsed crystalline shell of size N = 12002. b) At a large inward pressure of p/pc = 200,
the radius of gyration scales with the shell radii as Rg ∼ Rν with ν = 1.00±0.03. The small error bars on the data are standard
errors. Note that both axes in the plot are linear.
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