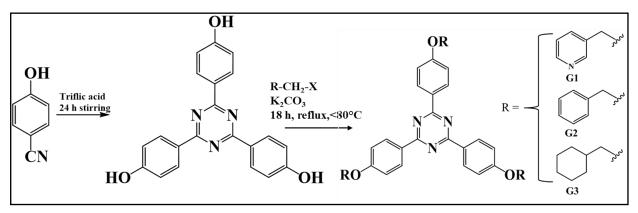
ELECTRONIC SUPPLEMENTARY INFORMATION

Differentiating aliphatic and aromatic alcohols by Triazinebased Supramolecular Organogelators: End Group Specific Selective Gelation with Chain Length of Alcohols


Priya Paul,^a Subhajit Saha^a and Kumar Biradha^{* a}

a. Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India. E-mail: kbiradha@chem.iitkgp.ac.in.

Contents

- **1. Experimental Section**
- 2. ¹H NMR Spectra
- 3. Inverted Vial Test images
- 4. FESEM Images
- 5. Rheological Parameters
- 6. TEM Images
- 7. Rheological parameter and Inverted Vial Test for degelation studies
- 8. Crystal structure description
- 9. PXRD Plot

1. Experimental Section

Scheme S1. Experimental protocol of gelators G1, G2 and G3

The gelators were prepared in two steps, starting from 4-cyanophenol, according to the reported literature. First 2,4,6-triazinetriphenol was prepared¹ and then it was subjected to a S_N2 reaction² to produce the final product.

Synthesis of 2,4,6-triazinetriphenol:

Trifluoromethanesulfonic acid (12.18 mmol) was slowly added to a stirred solution of 4cyanophenol (4.2 mmol) in DCM at $0^{\circ}C$ under a N₂ atmosphere. Then it was allowed to come to room temperature. After stirring for next 24 h, solvent was evaporated and ice-cold water was poured into it to obtain white precipitate. Then it was neutralized by adding ammonia solution. The precipitate was filtered, washed with water and dried to obtain the product as white powder (Yield- 96%).¹

Synthesis of Gelator G1

A mixture of 2,4,6-Triazinetriphenol (10 mmol) and K_2CO_3 (60 mmol) was taken in a two neck RB in presence of dry DMF solvent and heated for at least half an hour at 80 °C. After this 3-chloromethyl pyridine (50 mmol) was added into this reaction mixture and the entire solution was refluxed at 80 °C for 12 hrs. The reaction was thereafter quenched by adding water and leading to the formation of a white precipitate. The precipitate was filtered and washed thoroughly with water and then dried under vacuum. (Yield- 68%).

Synthesis of Gelator G2

A mixture of 2,4,6-triazinetriphenol (10 mmol) and K₂CO₃ (60 mmol) was taken in a two neck RB in presence of dry DMF solvent and heated for at least half an hour at 80 °C. After this

benzyl chloride (50 mmol) was added into this reaction mixture and the entire solution was refluxed at 80 °C for 12 hrs. The reaction was thereafter quenched by adding water and leading to the formation of a white precipitate. The precipitate was filtered and washed thoroughly with water and then dried under vacuum. (Yield-98%)

Synthesis of Gelator G3

A mixture of 2,4,6-triazinetriphenol (10 mmol) and K_2CO_3 (60 mmol) was taken in a two neck RB in presence of dry DMF solvent and heated for at least half an hour at 80 °C. After this (bromomethyl)cyclohexane (50 mmol) was added into this reaction mixture and the entire solution was refluxed at 80 °C for 12 hrs. The reaction was thereafter quenched by adding water and leading to the formation of a white precipitate. The precipitate was filtered and washed thoroughly with water and then dried under vacuum. (Yield-89%)

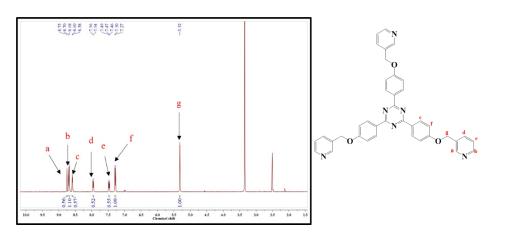


Fig. S1 ¹H NMR of gelator G1

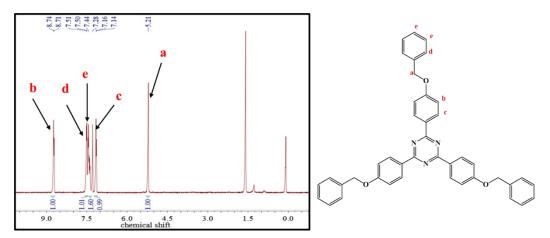


Fig. S2 ¹H NMR of gelator G2

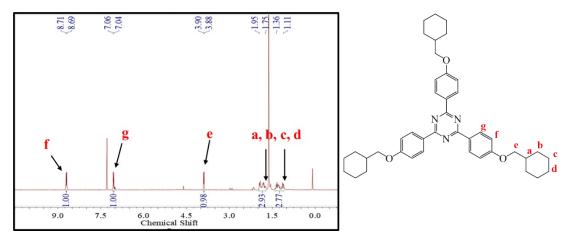


Fig. S3 ¹H NMR of gelator G3

Table S1. Behaviour of G1, G2 and G3 over a series of solvents and MGC and T_{gel} values where gel formation	n
occurs	

Class of Solvent	Solvent System	G1(MGC)/ T _{gel} (°C)	G2(MGC)/ T _{gel} (°C)	G3(MGC)/ T _{gel} (°C)
	Hexane	Ι	Ι	Ι
Non-polar	Cyclohexane	Ι	S	Ι
	DCM	PS	S	S
	CHCl ₃	PS	S	S
	ACN	PS	Ι	Ι
Polar Aprotic	Acetone	PS	Ι	Ι
	DMF	S	S	S
	DMSO	S	S	S
	DMA	S	S	PS
Polar Protic	H ₂ O	Ι	Ι	Ι
	Methanol	PS	Ι	Ι
	Ethanol	G(6)/50	Ι	Ι
	Propanol	G(6)/72	Ι	Ι
	Isopropanol	G(6)/65	Ι	PS
	Allylic alcohol	S	Ι	PS
	Butanol	G(7)/80	Ι	G(6)/75
	2-butanol	G(7)/69	Ι	PS
Aliphatic	t-butanol	G(8)/54	Ι	PS
alcohol	1-pentanol	S	PS	G(6)/87
	1-hexanol	S	S	G(8)/102
	1-heptanol	PS	G(8)/110	G(8)/130
	1-octanol	PS	G(10)/116	Р
	1-decanol	PS	G(10)/128	Р
	3-butene-2-ol	PS	PS	Р
	Cyclohexanol	G(15)/72	G(8)/96	G(6)/78

Aliphatic	Ethylene glycol	G(6)/105	PS	Ι
polyalcohol	1,4-butandiol	G(5)/100	PS	Ι
	Glycerol	PS	PS	Ι
Aromatic	Phenol	S	S	S
alcohols	Benzyl alcohol	S	Р	S

N.B. I- insoluble, P-Precipitate, PS-partially soluble, S- Clear solution, G-Gel

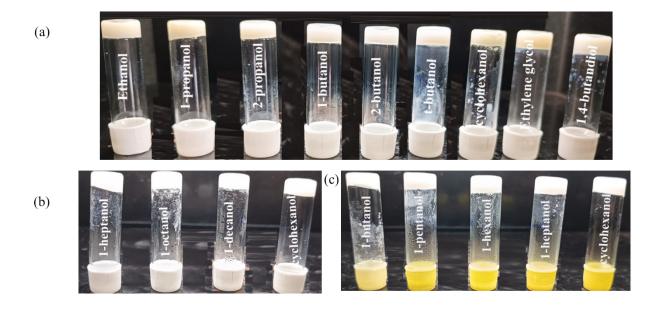
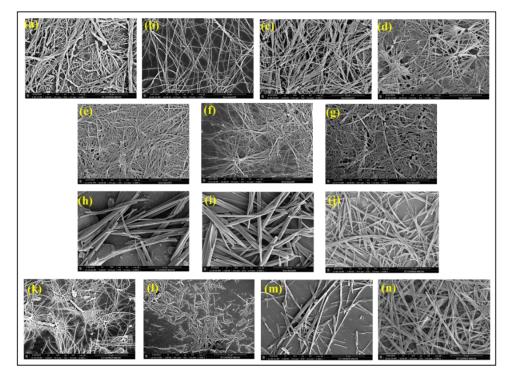
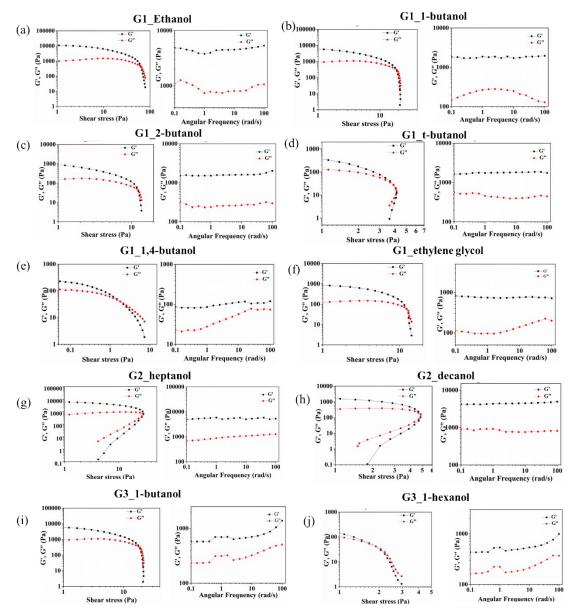




Fig. S4. Inverted vial picture of gels from different alcoholic solution for (a) G1 (b) G2 (c) G3

Fig. S5 FESEM images of (a) G1_ethanol (b) G1_ethylene glycol (c) G1_1,4-butandiol (d) G1_cyclohexanol (e) G1_1-butanol (f) G1_2-butanol (g) G1_t-butanol (h) G2_cyclohexanol (i) G2_1-decanol (j) G2_1-heptanol (k) G2_1-octanol (l) G3_1-butanol (m) G3_1-hexanol (n) G3_cyclohexanol

Fig. S6 Rheological parameters of (a) G1_ethanol (b) G1_1-butanol (c) G1_2-butanol (d) G1_ t-butanol (e) G1_1,4-butanol (f) G1_ethylene glycol (g) G2_1-heptanol (h) G2_1-decanol (i) G3_1-butanol (j) G3_1-hexanol

	G1		G2		G3	
	Yield	G'G''	Yield	G'-G"	Yield	G'-G"
	Stress (Pa)	(Pa)	Stress (Pa)	(Pa)	Stress (Pa)	(Pa)
Ethanol	63.55	3427.96	-	-	-	-
1-butanol	21.38	1606.59	-	-	2.84	415.72
2-butanol	12.25	1338.98	-	-	-	-
t-butanol	3.93	1299.97	-	-	-	-

Table S2. Rheological data of various gels obtained from different moieties

1-hexanol	-	-	-	-	1.39	583.39
1-heptanol	-	-	27.86	4896.61	-	-
1-decanol	-	-	4.89	3592.41	-	-
Ethylene	12.65	577.06	-	-	-	-
glycol						
1,4-	1.82	39.69	-	-	-	-
butandiol						
cyclohexanol	14.55	1625.96	133.25	8584.12	11.18	959.94

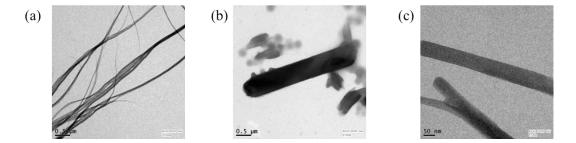


Fig. S7 . TEM images of (a) G1_cyclohexanol (b) G2_cyclohexanol (c) G3_cyclohexanol

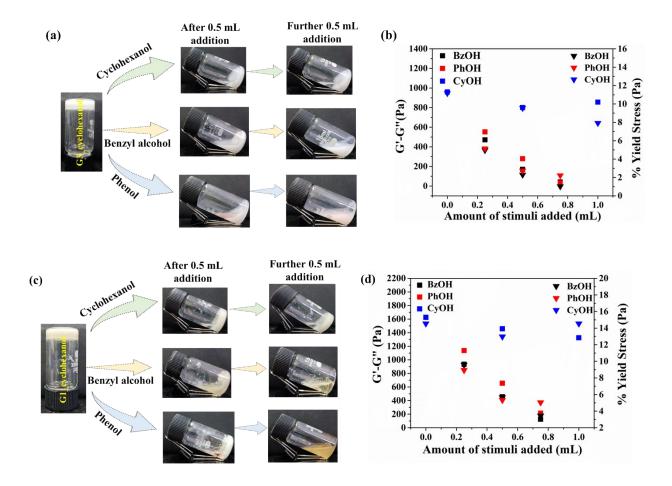


Fig. S8 (a), (c) Stimuli-responsive behaviour of G1_cyclohexanol and G3_cyclohexanol in presence of various stimuli like cyclohexanol, benzyl alcohol and phenol (b), (d) Stepwise rheological parameter correlation diagram of G1_cyclohexanol and G3_cyclohexanol gel

 Table S3. Rheological data at different stages of degelation studies on gel_cyclohexanol using various chemical stimuli

	Amount	G1_cyclohexanol		G2_cyclohexanol		G3_cyclohexanol	
	of solvent	G' G''	Yield	G' G"	Yield	G'- G"	Yield
	added		stress		stress		stress
	0 mL	1625.9	14.55	8584.12	133.25	959.94	11.18
	0.25 mL	934.89	9.58	2083.52	72.61	471.46	4.97
Benzyl alcohol	0.5 mL	456.34	5.67	1607.07	33.92	170.29	2.30
	0.75 mL	124.8	3.45	498.43	12.40	42.04	1.03
	0 mL	1625.96	14.55	8584.12	133.25	959.94	11.18
	0.25 mL	1136.78	8.94	3376.16	90.34	552.9	5.15
Phenol	0.5 mL	654.98	5.34	3147.22	61.56	278.79	2.74
	0.75 mL	213.9	5.05	1301.96	59.68	31.98	2.22

	0 mL	1625.96	14.55	8584.12	133.25	959.94	11.18
Cyclohexanol	0.5 mL	1456.78	12.98	7659.24	111.12	801.25	9.56
	1 mL	1324.87	14.55	7821.46	125.06	856.12	7.92

Table S4.

parameters for gelator G2

Crystallographic

CCDC 232	3438
Formula	C ₄₂ H ₃₃ N ₃ O ₃
Crystal System	Monoclinic
MW	627.71
Temperature (K)	296(2)
a (Å)	23.719(3)
b (Å)	5.8937(7)
c (Å)	26.041(3)
α (°)	90
β (°)	117.009(3)
γ (°)	90
Cell Volume (Å ³)	3243.31
Space Group	P2 ₁ /n
d (g/cm ³)	1.285
Z	4
R-factor	5.6

Table S5. Angle between the planes

Planes	Interplaner Angles
AB	87º
AC	79°
AD	44°

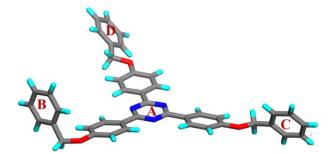


Fig. S9. (a) 1D chain along x-axis propagating via H-bonding interactions (b) Overall 3D view of G2

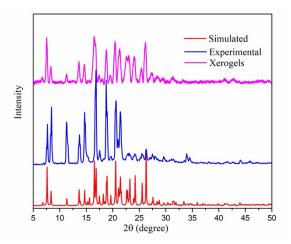


Fig. S10. PXRD of crystal of G2 and xerogels from G2_cyclohexanol

REFERENCES

- 1. Samanta, J.; Natarajan, R. Org. Lett. 2016, 18, 14, 3394–3397.
- 2. Kotha, S.; Solanke, B. U.; Gupta, N.K. J.Mol.Struct. 2021, 1244,130907.