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1 Surface Projection
To project fields defined over the domain Ω0 onto the surface S0,
we introduce the surface projection tensor for a tangent surface
with outward unit normal NNN as

P= III−NNN⊗NNN, (S.1)

where III is the second-order identity tensor1. A smooth vector
field vvv (e.g. a displacement field) and a smooth second-order
tensor field TTT (e.g. a stress field) are projected onto the surface
as

vvvs = Pvvv and TTT s = PTTTP. (S.2)

Furthermore, the surface gradient of a vector field follows from

∇∇∇sφφφ = P∇∇∇φφφ and ∇∇∇svvv = (∇∇∇vvv)P. (S.3)

As an example, the surface deformation gradient follows as

FFFs = III +P∇suuu. (S.4)

Note that within the manuscript, the projection tensor is dropped
for simplicity as in previous studies1.

2 Finite Kinematics

2.1 General setting

The non-linear Shuttleworth equations correspond to the expres-
sions of the stress measures as a function of the surface energy
in the current configuration W c. In this setting, the second Piola-
Kirchhoff stress follows as

SSSs =W c ∂Js

∂EEEs
+ Js

∂W c

∂EEEs
. (S.5)
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Noting that Js = det(FFFs) =
√

det(2EEEs + III), and using the relation-
ship

∂ detMMM
∂MMM

= (detMMM)MMM−T (S.6)

for any invertible tensor MMM, we obtain the non-linear Shuttle-
worth equation for the second Piola-Kirchhoff stress tensor

SSSs =W c Js

(
FFFT

s FFFs

)−1
+ Js

∂W c

∂EEEs
. (S.7)

Equivalently, the first Piola-Kirchhoff stress tensor reads

PPPs =W c JsFFFs

(
FFFT

s FFFs

)−1
+ JsFFFs

∂W c

∂EEEs
, (S.8)

and the Cauchy stress is given as

σσσ s =W cI+FFFs
∂W c

∂EEEs
FFFT

s . (S.9)

2.2 Surface stress-strain relations

We can tailor stress measures to a specific constitutive material
model by choosing, e.g., the St. Venant-Kirchhoff model

W R(EEEs) = γ Js +µs tr(EEEsEEEs)+
1
2

λs(tr(EEEs))
2. (S.10)

In addition to relation (S.6), we note that the derivative of a ten-
sor MMM with respect to that tensor is simply ∂ tr(MMM)

∂MMM = III. Using the
chain rule, the different stress measures under consideration then
follow as

SSSs =
∂W R

∂EEEs
= FFF−1 ∂W R

∂FFFs

= γJs(FFFT
s FFFs)

−1 +2µsEEEs +λstr(EEEs)III, (S.11)

and the relations

PPPs = FFFsSSSs and σσσ s = J−1
s PPPsFFFT

s (S.12)

lead to the main text equations (7) and (8).
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3 Linearization
For linearized surface relaxation, we express all quantities at play,
J, FFF and EEE at first order in displacement gradient ∇∇∇uuu or in strains
εεε. The deformation gradient is readily defined at first order, FFF =

III +∇∇∇uuu, the Green-Lagrange strain tensor at first order simplifies
to the linear strains EEE = εεε +O(εεε2), and the local area change
simplifies to J = [1+ tr(εεε)]+O(εεε2).

For finite surface relaxation, we expand all terms to linear or-
der in ∇∇∇uuu0, whereas terms involving FFF∗ stay finite. The deforma-
tion gradient then simplifies to FFF = (III +∇∇∇uuu0)FFF∗+O([∇∇∇uuu0]2), the
Green-Lagrange tensor to EEE = EEE∗+FFF∗εεε0(FFF∗)T +O([∇∇∇uuu0]2), and
the local area change to J =

[
1+ tr(εεε0)

]
J∗+O(εεε2).

4 Finite surface relaxation in the absence of surface
shear

In the absence of surface shear, the surface deformation gradient
is diagonal

Fs =

(
Fs‖ 0
0 Fs⊥

)
, (S.13)

with Fsi = 1+ εsi, where i =‖ or i =⊥ denote the two principal
directions. Assuming the principal directions of the surface re-
laxation and of the imposed deformation coincide, we obtain the
generic expression for the Cauchy principal stresses

σ̄si =γ + σ̄
∗
si +2µs

(
(F∗si)

4 +2(F∗si)
2E∗si)

)
ε

0
si

+λs

(
(F∗si)

4 +2(F∗si)
2(E∗si +E∗sj)

)
ε

0
si (S.14)

+λs(F∗siF
∗
sj)

2
ε

0
sj,

with (i, j) = (‖,⊥) or (i, j) = (⊥,‖) the principal directions, σ̄∗si =

(2µs + λs)(F∗si)
2E∗si + λs(F∗si)

2E∗sj the surface relaxation stress con-
tribution and Esi = εsi(2+ εsi)/2 the diagonal components of the
Green-Lagrange strain tensor.

5 Relaxing cylinder
The total energy of the relaxing cylinder,

Wtot = min
λ ∗

(S0 γ +V0 W R(λ ∗)) , (S.15)

comprises a surface contribution S0 γ and a bulk contribution
V0 W R(λ ∗), where S0 and V0 are the surface and volume of the re-
laxed cylinder, respectively. Here, W R(λ ∗) = µ(2λ ∗2 +λ ∗−4−3)/2
derives from the strain energy density of a Neo-Hookean incom-
pressible material. The solutions to Eq. (S.15) are

λ
∗3
± =

γ/R±
√

(γ/R)2 +4µ2

4µ
, (S.16)

from which we discard λ ∗− for physical reasons (λ ∗ > 0 when
Lec/R� 1), which leads to Eq. (19).
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