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1 Surface Projection

To project fields defined over the domain Qg onto the surface S,
we introduce the surface projection tensor for a tangent surface
with outward unit normal N as

P=I-N®N, (S.1)

where I is the second-order identity tensorl. A smooth vector
field v (e.g. a displacement field) and a smooth second-order
tensor field T (e.g. a stress field) are projected onto the surface
as

vy=Pv and T,=PTP. (8.2)

Furthermore, the surface gradient of a vector field follows from

V¢ =PV¢ and V,v=(Vy)P. (8.3)
As an example, the surface deformation gradient follows as
Fy=1+PVu. (8.4)

Note that within the manuscript, the projection tensor is dropped
for simplicity as in previous studies™.

2 Finite Kinematics

2.1 General setting

The non-linear Shuttleworth equations correspond to the expres-
sions of the stress measures as a function of the surface energy
in the current configuration W°. In this setting, the second Piola-
Kirchhoff stress follows as

dJs awe

S =W'—+

JE, +JSTE,S- (8.5)
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Noting that J; = det(F;) = /det(2E;+I), and using the relation-
ship
ddetM
oM
for any invertible tensor M, we obtain the non-linear Shuttle-
worth equation for the second Piola-Kirchhoff stress tensor

= (detM)M~ T (S.6)

—1 awc
S, =W (FTF)  +J5=p (S.7)
s s( s s) K 8ES
Equivalently, the first Piola-Kirchhoff stress tensor reads
—1 awc
P, =WCJF,(FTFy) +JFy——o, (5.8)
s sE 8 ( K S) sE 5 aES
and the Cauchy stress is given as
owe
6, =WI+F FT. (5.9
s N aEs Ky

2.2 Surface stress-strain relations

We can tailor stress measures to a specific constitutive material
model by choosing, e.g., the St. Venant-Kirchhoff model
1

WH(Ey) = s+ p tr(EEy) 4 5 s (tr(E,)) % (8.10)
In addition to relation (S.6), we note that the derivative of a ten-
sor M with respect to that tensor is simply aggy) = I. Using the
chain rule, the different stress measures under consideration then
follow as

S = IWR Wt
JE, oF
= yJs(FTF) ™' 4 2uE  + Astr(EI, (5.11)
and the relations
P,=FS; and o, =J; 'PFT (8.12)

lead to the main text equations (7) and (8).
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3 Linearization

For linearized surface relaxation, we express all quantities at play,
J, F and E at first order in displacement gradient Vu or in strains
€. The deformation gradient is readily defined at first order, F =
I+ Vu, the Green-Lagrange strain tensor at first order simplifies
to the linear strains E = € 4 ¢/(€?), and the local area change
simplifies to J = [1 +tr(g)] + O(&?).

For finite surface relaxation, we expand all terms to linear or-
der in Vu®, whereas terms involving F* stay finite. The deforma-
tion gradient then simplifies to F = (I + Vu®)F* + ¢([Vu']?), the
Green-Lagrange tensor to E = E* + F*e*(F*)" + 0([Vu’]?), and
the local area change to J = [1 +tr(€%)] J* + 0/(€?).

4 Finite surface relaxation in the absence of surface

shear

In the absence of surface shear, the surface deformation gradient

is diagonal
F, = ( By 0 > (5.13)
0 F

with F; = 1+ &, where i =| or i =L denote the two principal
directions. Assuming the principal directions of the surface re-
laxation and of the imposed deformation coincide, we obtain the
generic expression for the Cauchy principal stresses

& =7+ 65+ 20 ((FD)* +2(Fi)ES) ) €]
2 () + 2R (B + E)) €3 (S.14)
+AS(FSTFS§)2837

with (i, j) = (||, 1) or (i,j) = (L,]|) the principal directions, &;; =
(215 + As) (F3)?ES + ls(F;{)zE:j the surface relaxation stress con-
tribution and Eg = &;(2 + &;)/2 the diagonal components of the
Green-Lagrange strain tensor.

5 Relaxing cylinder

The total energy of the relaxing cylinder,
Wiot =Hi{n(507+V0WR(7L*))7 (8.15)

comprises a surface contribution Syy and a bulk contribution
Vo WR(A*), where Sy and V; are the surface and volume of the re-
laxed cylinder, respectively. Here, W*(A*) = u(2A4*2 + A*~* —3)/2
derives from the strain energy density of a Neo-Hookean incom-
pressible material. The solutions to Eq. are

2 2
at = YREV/RE +47 (S.16)

4

from which we discard A* for physical reasons (1* > 0 when
L.c/R < 1), which leads to Eq. (19).
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