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1 Compressible Self-Consistent Field Theory for Diblock Copoly-

mer Systems

Let us consider a compressible system of diblock copolymers A-block -B (d) under constant temperature
T and isotropic pressure P . Let nd be the number of diblock copolymers, and let NA and NB be the
number of segments of each block, respectively. The total number of segments is Nd = NA +NB, and the
block ratio of the A-component is f = NA/Nd. Based on the lattice vacancy concept1–3, we consider the
free volume of the system, described as voids (v) below. This model treats voids as another component
of nv conceptual solvent molecules composed of a single segment (Nv = 1), enabling the straightforward
conversion of the classical incompressible lattice model to a compressible one. In this model, changes in the
number of voids express changes in the system volume V . The average segment number density is written
as ρ0 = (ndNd + nv)/V . For simplicity, we assume that all segments occupy equal volume, v0 = 1/ρ0, and
polymer segments have equal Kuhn length, a = aA = aB, as in the usual SCF theories4.

The compressible SCF theory with voids can be formulated in the straightforward way of the incom-
pressible SCF theory5. The detailed procedure for deriving SCF equations and a free energy functional of
an incompressible system is explained in references 4,6–8. Consequently, we here outline the formulation of
the compressible SCF theory.

The Hamiltonian H of the system is divided into the ideal chain part H0 and the non-bonded interaction
partW . The ideal chain part is given by H0 = (3/2Nda

2)
∫ 1

0
ds (drα(s)/ds)

2, where s is the counter variable
from 0 to 1 scaled by the chain length, and rα(s) specifies the space curve of the α-th chain of the block

copolymer. We give the dimensionless density operators at position r, ϕ̂A(r) = (Nd/ρ0)
∑nd

α=1

∫ f

0
ds δ(r−

rα(s)), ϕ̂B(r) = (Nd/ρ0)
∑nd

α=1

∫ 1

f
ds δ(r− rα(s)), and ϕ̂v(r) = (1/ρ0)

∑nv

γ=1 δ(r− rγ) where rγ expresses a
local position of the γ-th void. Then, the partition function Z can be written as

Z =

∫ nd∏
α=1

D̃rα

nv∏
γ=1

drγ δ(1− ϕ̂A − ϕ̂B − ϕ̂v) exp(−βW) (1)

where β ≡ 1/kBT , and the first functional integral over all configurations is weighted with the ideal
chain part, D̃rα ≡ Drα exp(−βH0). The delta functional enforces the incompressibility constraint of
ϕ̂A(r) + ϕ̂B(r) + ϕ̂v(r) = 1. The non-bonded interaction part of the Hamiltonian, W , can be written with
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the Flory interaction parameters, χij, as βW = (ρ0/2)
∫
dr

∑
i,j χijϕ̂iϕ̂j where i, j = A,B, v. The Flory

interaction parameters are defined as χij = χji ≡ β(ϵ∗ii + ϵ∗jj − 2ϵ∗ij) where ϵ∗ij(≥ 0) is the characteristic
self-interaction energy between the i-th and the j-th components having a unit of [J]. In the lattice vacancy
model, the interactions between the i-th components and voids are assigned zero energy, ϵ∗Av = ϵ∗Bv = ϵ∗vv =
0 [J]1–3.

After the replacement of operators by field valuables and the saddle-point approximation, the partition
function can be rewritten as

Z =

∫ ∏
i

(DϕiDωi)Dξ
∏
k

(
Qnk

k

nk!

)
exp

{
− ρ0
Nd

∫
dr

[
1

2

∑
i,j

χijNdϕiϕj −
∑
i

ωiϕi − ξ

(
1−

∑
i

ϕi

)]}
(2)

where k = d, v, and Qd and Qv are the partition functions for a single molecule of the diblock copolymer
and the void, respectively. The field valuables, ϕi, ωi, and ξ, denote the density field of the i-th component,
the self-consistent field of the i-th component, and the Lagrange multiplier field. The partition function
gives free energy of

NdF

ρ0kBTV
= −

∑
k

[
Nd

Nk

ϕ̄k ln

(
NkQk

NdV ϕ̄k

)]
+

1

V

∫
dr

[
1

2

∑
i,j

χijNdϕiϕj −
∑
i

ωiϕi − ξ

(
1−

∑
i

ϕi

)]
(3)

where ϕ̄k is the average volume fraction of the k-th component. The SCF equations are also derived from
the partition function as follows:

ωi(r) =
∑
j

χijNdϕj(r) + ξ(r) (4)

ϕA(r) + ϕB(r) + ϕv(r) = 1 (5)

ϕA(r) =
ϕ̄dV

Qd

∫ f

0

ds q(r, s)q†(r, s) (6)

ϕB(r) =
ϕ̄dV

Qd

∫ 1

f

ds q(r, s)q†(r, s) (7)

ϕv(r) =
ϕ̄vV

Qv

exp

[
− 1

Nd

ωv(r)

]
(8)

The end-segment distribution function of the diblock copolymers, q(r, s), is the solution to the modified
diffusion equation of ∂q/∂s = (1/6)Nda

2∇2q − ωdq where ωd(r, s) = ωA(r) for s ∈ [0, f ] and ωd(r, s) =
ωB(r) for s ∈ [f, 1]. The initial condition is q(r, 0) = 1. A second end-segment distribution function
for the opposite chain end q†(r, s) satisfies the above-modified diffusion equation with a minus sign on
the right-hand side and the initial condition q†(r, 1) = 1. The single-molecule partition functions can
be written as Qd =

∫
dr q(r, 1) and Qv =

∫
dr exp[−ωv(r)/Nd]. In this study, the modified diffusion

equation was solved by the pseudo-spectral method 6,9. One-dimensional calculation cell dimensions were
optimized by the valuable cell shape method 6,10. We continued the iterative calculation until the differences
of the self-consistent fields were less than 10−6. Note that applications of this compressible SCF theory to
copolymer systems of more complicated structures, such as linear multiblock copolymers and starpolymers,
are straightforward6,7,11–13.

The number of voids can be determined using the Sanchez-Lacombe equation of state (SL-EOS), derived
based on the lattice vacancy model1–3. The segment volume and the segment number are written as
v∗i = kBT

∗
i /P

∗
i and Ni = Mi/ρ

∗
i v

∗
i , where P ∗

i (= ϵ∗ii/v
∗
i ), T

∗
i (= ϵ∗ii/kB), and ρ∗i are the i-th pure-component

EOS parameters, and Mi is the molecular weight of the i-th component. The EOS parameters for mixtures,
P ∗, T ∗, and ρ∗ can be obtained by combining pure-component parameters. The combining rules of diblock
copolymers (binary case) are given by2,3

v0 =
f

f + (v∗A/v
∗
B)(1− f)

v∗A +
1− f

(1− f) + (v∗B/v
∗
A)f

v∗B (9)
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P ∗ = f 2P ∗
A + (1− f)2P ∗

B + 2f(1− f)P ∗
AB (10)

T ∗ = P ∗v0/kB (11)

ρ∗ =
1

wA/ρ∗A + wB/ρ∗B
(12)

where wA and wB are the weight fractions of A and B. The cross term of characteristic pressure, P ∗
ij, is

written with a dimensionless adjustable parameter ξij as P
∗
ij = ξij

√
P ∗
i P

∗
j . The parameter ξij is determined

to reproduce the phase behavior of the system. The dimensionless interaction parameter, χij, is related as
χij = β∆P ∗

ijv0 where ∆P ∗
ij ≡ P ∗

i +P ∗
j − 2P ∗

ij
2,3. The conventional form of the SL-EOS is ρ̃2+ P̃ + T̃ [ln(1−

ρ̃) + ρ̃] = 0, where ρ̃ (≡ ρ/ρ∗), P̃ (≡ P/P ∗), and T̃ (≡ T/T ∗) are the dimensionless mass density, pressure,
and temperature, respectively. This EOS can be rewritten by using the valuables in the SCF theory as
follows:

P =
kBT

v0

{
− ln ϕ̄v − (1− ϕ̄v) + [χABf(1− f)− χAvf − χBv(1− f)](1− ϕ̄v)

2

}
(13)

At given T and P , ϕ̄v can be calculated by Equation (13).

2 Extension of the Compressible SCF Theory to Multi-Component

Systems

The compressible SCF theory based on the lattice vacancy model can straightforwardly introduce additional
polymer and solvent species. For example, let us consider an additional component of a gas pressure
medium (g) absorbed into the polymer phase. Let ng be the number of gas solvents, and let Ng be
the number of segments of each solvent. In this case, the average segment number density is written as
ρ0 = (ndNd + ngNg + nv)/V where V is the system volume. The partition function Z is modified as

Z =

∫ ∏
i

(DϕiDωi)Dξ
∏
k

(
Qnk

k

nk!

)
exp

{
− ρ0
Nd

∫
dr

[
1

2

∑
i,j

χijNdϕiϕj −
∑
i

ωiϕi − ξ

(
1−

∑
i

ϕi

)]}
(14)

where i, j = A,B, g, v, k = d, g, v, and Qg is the partition functions for a single molecule of the gas. This
partition function Z yields the following free energy and SCF equations:

NdF

ρ0kBTV
= −

∑
k

[
Nd

Nk

ϕ̄k ln

(
NkQk

Ndϕ̄kV

)]
+

1

V

∫
dr

[
1

2

∑
i,j

χijNdϕiϕj −
∑
i

ωiϕi − ξ

(
1−

∑
i

ϕi

)]
(15)

ωi(r) =
∑
j

χijNdϕj(r) + ξ(r) (16)

∑
i

ϕi(r) = 1 (17)

ϕA(r) =
ϕ̄dV

Qd

∫ f

0

ds q(r, s)q†(r, s) (18)

ϕB(r) =
ϕ̄dV

Qd

∫ 1

f

ds q(r, s)q†(r, s) (19)

ϕg(r) =
ϕ̄gV

Qg

exp

[
−Ng

Nd

ωg(r)

]
(20)

ϕv(r) =
ϕ̄vV

Qv

exp

[
− 1

Nd

ωv(r)

]
(21)
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where

Qg =

∫
dr exp

[
−Ng

Nd

ωg(r)

]
(22)

When little gas is absorbed into the polymer phase, we can approximate the combining rules for SL-
EOS by those of pure diblock copolymers. Henry’s law determines the absorption amount of gases with
applied pressure: wg = HP where wg is the weight fraction of the gas absorbed by the polymer and H is
the Henry’s law constant. According to the SL-EOS theory, the Henry’s law constant of diblock copolymer
solutions is given by14

H =
Mg

RTρ∗
exp

{
(1− ϕ̄v)

Mg

ρ∗gkBT
[P ∗

g −f∆P ∗
Ag−(1−f)∆P ∗

Bg+f(1−f)∆P ∗
AB]−Ng

[
1+

ϕ̄v

1− ϕ̄v

ln ϕ̄v

]}
(23)

where Ng is the number of segments of the gas molecules. From obtained wg, we can calculate the average
gas volume fraction as2,3

ϕ̄g =
wg/ρ

∗
g

wg/ρ∗g + (1− wg)/ρ∗
(1− ϕ̄v) (24)

3 Determination of Equation-of-State Parameters

Table S1: SL-EOS Parameters of Polymers and Gases

Parameters PS PnPMA PMMA N2 He

P ∗
i [MPa]a) 366.9 324.8 366.6 617.3 31.8

T ∗
i [K]a) 773.0 684.4 772.4 162.2 7.8

ρ∗i [g/cm3]a) 1.0928 1.0560 1.2373 1.8943 0.5300
ξPS,i 1.00154b) 0.99735c) 0.75b) 0.80b)

ξPnPMA,i 1.00154b) 1.05b) 1.25b)

a) Literature values for PS15, N2
16, and He16, and determined values by fitting literature PV T data for

PnPMA16 and PMMA17. b) Determined to reproduce the literature data 16,18. c) Determined to
reproduce the literature data19.

We determined the equation-of-state (EOS) parameters from the PV T data and the phase behavior
in references as shown in Table S1. We referred to the literature values of pure-component parameters of
PS15, N2

16, and He16. We determined the parameters of PnPMA and PMMA by fitting literature value
at 468 K16 and at 398 K17, assuming the fixed segment volume identical to the segment volume of PS
(17.52 cm3/mol) as shown in Figure S1 and S3, respectively. In this paper, we investigate PS-b-PnPMA
of Nd ≃ 2600 and f = 0.5 at T = 468 K, which corresponds to the original experimental data for PS-b-
PnPMA with a molecular weight of Mw = 4870016. We adjusted the parameter ξPS,PnPMA to reproduce
the experimental phase behavior at 468 K (PODT: 3–4 MPa)16,18. We also investigate PS-b-PMMA of
Nd ≃ 1100 (Mn = 22160) and f = 0.5 at T = 393 K and adjusted ξPS,PMMA to reproduce the phase behavior
at 393 K (PODT = 0.1 MPa)19. The parameters for PS-b-PnPMA/He, ξPS,He and ξPnPMA,He, are adjusted
to reproduce PODT ≃ 4 MPa at 468 K16. The parameters for PS-b-PnPMA/N2, ξPS,N2 and ξPnPMA,N2 are
chosen to reproduce the non-baroplastic (barotropic) phase behavior at 468 K 16. In this work, we have
considered baroplastic BCPs in a narrow temperature-pressure window. The equation-of-state parameters
may have different values in the other temperature-pressure window. A complex temperature and pressure
dependence of interaction parameters in a large temperature-pressure window is crucial for future research
endeavors.
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Figure S1: SL-EOS curve fitting to the literature data 16 of PnPMA at 195.0 ◦C (468 K).
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Figure S2: SL-EOS curve of PS-b-PnPMA at 468 K (Nd ≃ 2600, f = 0.5).
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Figure S3: SL-EOS curve fitting to the literature data 17 of PMMA at 124.5 ◦C (398 K).
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Figure S4: SL-EOS curve of PS-b-PMMA at 393 K (Nd ≃ 1100, f = 0.5).
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Figure S5: The volume fraction of gases absorbed into PS-b-PnPMA as a function of pressure (Nd ≃ 2600,
f = 0.5, T = 468 K).
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Figure S6: PS-b-PnPMA lamellar period as a function of pressure at 468 K (Nd ≃ 2600, f = 0.5). The
length is scaled by the radius of gyration of an ideal chain, Rg0.
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Figure S7: PS-b-PMMA lamellar period as a function of pressure at 393 K (Nd ≃ 1100, f = 0.5). The
length is scaled by the radius of gyration of an ideal chain, Rg0.
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Figure S8: Pressure dependence of ∆f (= flamellar − fdisordered) of PS-b-PMMA (Nd ≃ 1100, f = 0.5,
T = 393 K).
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Figure S9: PS-b-PnPMA/He lamellar period as a function of pressure at 468 K (Nd ≃ 2600, f = 0.5). The
length is scaled by the radius of gyration of an ideal chain, Rg0.
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Figure S10: PS-b-PnPMA/N2 lamellar period as a function of pressure at 468 K (Nd ≃ 2600, f = 0.5).
The length is scaled by the radius of gyration of an ideal chain, Rg0.
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