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Supplementary Information
1. Simulation validation

We apply beam elements to model the gel surface. The beam behaves like a real surface if it satisfies: (1) a
uniform prestress is applied so that the tension in the beam matches the surface tension ¥, (2) the tensile
stiffness of the beam is so low that the deformation in the simulation negligibly affects the prestress and the
cross-section Poisson’s ratio is set to 0 so that deformation does not change the cross-section area. Then the
surface tension V is independent of deformation. (3) the bending stiffness of the beam is so low that the
beam layer negligibly affects the deformation of the gel. To satisfy (1), we applied a uniform artificial
thermal stress inside the beam using a uniform thermal expansion coefficient and a uniform temperature
field. The thermal stress times the beam cross-section area matches the surface tension V. To satisfy (2), we
set the tensile stiffness of the beam to be much lower than the prestress so that the deformation negligibly

affects the prestress. Also, the cross-section Poisson’s ratio is set to 0 so that deformation does not change
the cross-section area. In our simulation, we set the beam modulus to be ~10 * of the prestress. As shown
in Fig. Sla, even for the case of the smallest surface tension (y/ Hlo= 0'02), the maximum change in surface
tension over the beam is negligible. To satisfy (3), we set the bending stiffness of the beam to be negligible

2
compared to “LO, where H is the shear modulus of the gel, Lo is the wavelength of the surface roughness,
and our plane-strain simulation has the unit thickness. In our simulation, we set the bending stiffness to be

- 2
~107"* of HLo As shown in Fig. S1b, the maximum sectional moment in the beam, M, is negligible

2
compared to HLG, The parameters of the beam section are summarized in Table S1.

Table S1. Simulation parameters in beam section.

Beam parameter | Young's modulus | Section Poisson's ratio | In-plane width | Thickness
Input values 0.001 0 1 0.001

In osmocapillary phase separation, the free surface represented by the beam above is unstable in the implicit
solver, ABAQUS Standard. To stabilize the simulation, we add an elastic layer above the beam (Fig. S1c).

We tune the modulus of the elastic layer to ensure that the elastic energy to stabilize the beam is negligible

compared to the surface energy of the beam layer (Fig. S1d). Note that since Aary <15 iy our studies, we

did not use the simulation result for the whole range of A1 <5 The Weta/VLo with 11 <15 i less than 0.1%.
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Figure S1. (a) The change in surface tension remains low during stretch. (b) The bending moment of the

beam remains low during stretch. (c) An elastic layer is added to stabilize the simulation. (d) The elastic
energy of the elastic layer remains low during stretch.

2. Critical stretches varies with Y/ HLo and v/ oL
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Figure S2. (a) Under a fixed v/ “LO, a larger V/MoLy shifts both Adry and Awet to larger stretches, and the gaps

V/M,L

between “dry and Awet are roughly unchanged. (b) Under a fixed 0, a larger V/uly widens the gap

between “dry and Awet, both Adry and Awet converges to 1 if V/uLq is extremely small.



3. The swelling-dependent Poisson’s ratio

According to the Flory-Rehner model, the free energy density W) =W + WmiX, where:
NkT
ola = T(Ai + 25 + 23 - 3 - 2log (4, 2,13)), (S1)
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Here 114243 are the principle stretches, N is the number of polymer chains per unit volume in the dry state,
kT is the temperature in the unit of energy, { is the volume per solvent molecule, X is a parameter describing
the interaction between the solvent and the polymer. Next, we apply a volumetric strain € = 6V/3V and
expand the following expressions to the linear order of €:

Weta _ NKT((22 + 22+ 22) - 3) + NkTe(22 + 22 + 22 + 3) (S3)
de 1T A2+ A3 1T AT A3+ 5)
AW ix kT ~1\ 3y\ kT 9 -1 12
o —(3 +3] log(]—) + —X) + —s( 3+ e log(]—) - —X) (S4)
de Q Ji ] Q J-1 ] ]
Here/ = hihahs,
10W
. . P=5-—-=DpptKe .
The hydrostatic pressure on the gel is 3 0¢ , where K is the bulk modulus. Then,
NKT(A2 + 22+ 22+ 3 kT 9 -1\ 12
K= ( 12 )+—(—3+—] +6]log(]—)——)(). (S5)
3 Q J-1 J J
The shear modulus G = NkT/J"/ 3[l], then the Poisson’s ratio can be calculated by:
3K - 2G
Ve —
2(3K + G) (56)

In general, V depends on both the swelling ratio / and the ratio between 41223 in addition to the network
parameters N and X. In Fig. S3, we plot the swelling dependent V for different material properties. For
typical hydrogels X < 0.5, NQ <1 the Poisson’s ratio is close to 0.5.
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Figure S3. The swelling-dependent Poisson’s ratio under (a) different polymer-solvent interaction
parameter X and (b) different crosslinking density N<,
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