
Supplementary Information

1. Simulation validation

We apply beam elements to model the gel surface. The beam behaves like a real surface if it satisfies: (1) a 
uniform prestress is applied so that the tension in the beam matches the surface tension , (2) the tensile 𝛾
stiffness of the beam is so low that the deformation in the simulation negligibly affects the prestress and the 
cross-section Poisson’s ratio is set to 0 so that deformation does not change the cross-section area. Then the 
surface tension  is independent of deformation. (3) the bending stiffness of the beam is so low that the 𝛾
beam layer negligibly affects the deformation of the gel. To satisfy (1), we applied a uniform artificial 
thermal stress inside the beam using a uniform thermal expansion coefficient and a uniform temperature 
field. The thermal stress times the beam cross-section area matches the surface tension . To satisfy (2), we 𝛾
set the tensile stiffness of the beam to be much lower than the prestress so that the deformation negligibly 
affects the prestress. Also, the cross-section Poisson’s ratio is set to 0 so that deformation does not change 
the cross-section area. In our simulation, we set the beam modulus to be ~  of the prestress. As shown 10 ‒ 4

in Fig. S1a, even for the case of the smallest surface tension ( ), the maximum change in surface 𝛾 𝜇𝐿0 = 0.02

tension over the beam is negligible. To satisfy (3), we set the bending stiffness of the beam to be negligible 

compared to , where  is the shear modulus of the gel,  is the wavelength of the surface roughness, 𝜇𝐿2
0 𝜇 𝐿0

and our plane-strain simulation has the unit thickness. In our simulation, we set the bending stiffness to be 

~  of . As shown in Fig. S1b, the maximum sectional moment in the beam, , is negligible 10 ‒ 14 𝜇𝐿2
0 𝑀

compared to  . The parameters of the beam section are summarized in Table S1.𝜇𝐿2
0

Table S1. Simulation parameters in beam section.

Beam parameter Young's modulus Section Poisson's ratio In-plane width Thickness
Input values 0.001 0 1 0.001

In osmocapillary phase separation, the free surface represented by the beam above is unstable in the implicit 
solver, ABAQUS Standard. To stabilize the simulation, we add an elastic layer above the beam (Fig. S1c). 
We tune the modulus of the elastic layer to ensure that the elastic energy to stabilize the beam is negligible 
compared to the surface energy of the beam layer (Fig. S1d). Note that since  in our studies, we 𝜆𝑑𝑟𝑦 < 1.5

did not use the simulation result for the whole range of . The  with  is less than 0.1%. 𝜆1 < 5 𝑊𝑒𝑙𝑎/𝛾𝐿0 𝜆1 < 1.5
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Figure S1. (a) The change in surface tension remains low during stretch. (b) The bending moment of the 
beam remains low during stretch. (c) An elastic layer is added to stabilize the simulation. (d) The elastic 
energy of the elastic layer remains low during stretch.

2. Critical stretches varies with  and 𝛾 𝜇𝐿0
𝛾 Π0𝐿0

Figure S2. (a) Under a fixed , a larger  shifts both  and  to larger stretches, and the gaps 𝛾 𝜇𝐿0
𝛾 Π0𝐿0 𝜆𝑑𝑟𝑦 𝜆𝑤𝑒𝑡

between  and  are roughly unchanged. (b) Under a fixed , a larger  widens the gap 𝜆𝑑𝑟𝑦 𝜆𝑤𝑒𝑡
𝛾 Π0𝐿0

𝛾 𝜇𝐿0

between  and , both  and  converges to 1 if  is extremely small.𝜆𝑑𝑟𝑦 𝜆𝑤𝑒𝑡 𝜆𝑑𝑟𝑦 𝜆𝑤𝑒𝑡
𝛾 𝜇𝐿0



3. The swelling-dependent Poisson’s ratio

According to the Flory-Rehner model, the free energy density , where:𝑊(𝐹) = 𝑊𝑒𝑙𝑎 + 𝑊𝑚𝑖𝑥

𝑊𝑒𝑙𝑎 =
𝑁𝑘𝑇

2 (𝜆2
1 + 𝜆2

2 + 𝜆2
3 ‒ 3 ‒ 2log (𝜆1𝜆2𝜆3)), (S1)
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Here  are the principle stretches,  is the number of polymer chains per unit volume in the dry state, 𝜆1,𝜆2,𝜆3, 𝑁
 is the temperature in the unit of energy,  is the volume per solvent molecule,  is a parameter describing 𝑘𝑇 Ω 𝜒

the interaction between the solvent and the polymer. Next, we apply a volumetric strain  and 𝜀 = 𝛿𝑉/3𝑉
expand the following expressions to the linear order of : 𝜀

𝑑𝑊𝑒𝑙𝑎
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3 + 3), (S3)

𝑑𝑊𝑚𝑖𝑥
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Here . 𝐽 = 𝜆1𝜆2𝜆3

The hydrostatic pressure on the gel is  , where  is the bulk modulus. Then,
𝑝 =

1
3

∂𝑊
∂𝜀
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𝐾
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The shear modulus [1], then the Poisson’s ratio can be calculated by:𝐺 = 𝑁𝑘𝑇/𝐽1/3

𝜈 =
3𝐾 ‒ 2𝐺

2(3𝐾 + 𝐺)
. (S6)

In general,  depends on both the swelling ratio  and the ratio between  in addition to the network 𝜈 𝐽 𝜆1,𝜆2,𝜆3

parameters  and . In Fig. S3, we plot the swelling dependent  for different material properties. For 𝑁Ω 𝜒 𝜈
typical hydrogels , the Poisson’s ratio is close to 0.5.𝜒 < 0.5, 𝑁Ω < 1



Figure S3. The swelling-dependent Poisson’s ratio under (a) different polymer-solvent interaction 
parameter  and (b) different crosslinking density .𝜒 𝑁Ω
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