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SI.1 Solution of Couette flow of two adjacent UCM fluids be-

tween parallel plates

Here, the general solution for Couette flow of two adjacent UCM fluids between parallel plates at

a constant applied shear rate is derived. A few key relationships between the flow variables of fluid

A and B are described, which will be useful deriving an analytical solution. As stated previously,

the shear stress is constant across the gap of the parallel plate geometry, and therefore:

σyx,A(y) = σyx,B(y) = σyx(y) , 0 ≤ y ≤ H (SI.1.1)

Additionally, the velocity varies continuously across the flow geometry. Therefore, the following

constraint must also be satisfied across fluid regions:

vx(y = 0)− vx(y = H) =

∫ y=0

y=H

dvx
dy

dy =

∫ y=0

y=hA

dvx
dy

dy +

∫ y=hA

y=H

dvx
dy

dy (SI.1.2)

with no-slip boundary conditions, vx(x = 0) = vw, the imposed wall velocity driving this Couette

flow, and vx(x = H) = 0 at the immobile plate boundary. Because the shear rate is constant within

each fluid region A and B, the derivatives dvx
dy

may be substituted for the corresponding shear rates

within each region, yielding the useful relation:

vw = −γ̇appH =

∫ y=0

y=hA

γ̇Ady +

∫ y=hA

y=H

γ̇Bdy = −γ̇AhA + (−γ̇B)hB (SI.1.3)

where γ̇app = −vw/H is the applied shear rate. Note that the negative signs in front of each shear

rate in equation SI.1.3 cancel out.

The analytical solution for startup and cessation of flow protocols is found by applying the

stress and shear rate constraints in equations SI.1.1 and SI.1.3, respectively, to obtain an ordinary

differential equation (ODE) for the stress evolution that is a function only of rheological parameters

of each UCM fluid and the applied shear rate, which is constant in these protocols. First, equations
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for the shear rate of fluid A and B are obtained by rearranging the following equation for the shear

stress (equation 7 in the main text):

τi
dσyx

dt
+ σyx = η0,iγ̇ (SI.1.4)

to yield:

γ̇A =
σ̇yx

G0,A

+
σyx

η0,A
(SI.1.5)

γ̇B =
σ̇yx

G0,B

+
σyx

η0,B
(SI.1.6)

where the elastic modulus G0,i = η0,i/τi for i = A,B. These shear rates are substituted into the

shear rate relation stated in equation SI.1.3 to obtain an equation that includes only the shear stress

and its time derivative, the fluid properties, and the applied shear rate:

γ̇app =
hA

H

(
σ̇yx

G0,A

+
σyx

η0,A

)
+

hB

H

(
σ̇yx

G0,B

+
σyx

η0,B

)
(SI.1.7)

where σ̇yx = dσyx/dt denotes the time derivative of the shear stress. If similar terms are grouped,

and the shear stress and its derivative are factored out, the ODE for shear stress is reduced to the

following form:

γ̇app =
σ̇yx

G0,eff

+
σyx

η0,eff
(SI.1.8)

where an effective elastic modulus and viscosity are defined as:

1

G0,eff

=
hA/H

G0,A

+
hB/H

G0,B

(SI.1.9)

1

η0,eff
=

hA/H

η0,A
+

hB/H

η0,B
(SI.1.10)

The solution to equation SI.1.8, for a constant applied shear rate, is simply:

σyx(t) = η0,eff γ̇app + C exp(−t/τeff ) (SI.1.11)
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where τeff = η0,eff/G0,eff and the integration constant C depends on the flow protocol and initial

condition.

SI.1.1 Particular solution for shear startup flow

Unlike in shear startup flows of the GCB model and in experiments of entangled WLMs, shear

startup of two adjacent UCM fluids between parallel plates predicts shear-banded velocity profiles

at all times in the flow if the rheological properties of fluids A and B are different. The particular

solution to the shear stress equation SI.1.11 for a constant applied shear rate γ̇0 and solution initially

at rest (σyx(t = 0) = 0) is:

σyx(t) = η0,eff γ̇0(1− exp(−t/τeff )) (SI.1.12)

where γ̇app = γ̇0 is the applied shear rate in shear startup. The evolution of the shear stress has the

same functional form as that of a single UCM fluid occupying the entire gap, except the zero-shear

viscosity and relaxation time are replaced by effective values. However, unlike if only one UCM

fluid occupied the gap, the shear rate is not constant and takes on different values in each fluid

region A and B. The shear rates γ̇A and γ̇B are obtained by substituting the shear stress given by

equation SI.1.12 into equations SI.1.5 and SI.1.6, respectively:

γ̇A = γ̇0

(
ηeff
ηA

−
(
ηeff
ηA

+
Geff

GA

)
exp(−t/τeff )

)
(SI.1.13)

γ̇B = γ̇0

(
ηeff
ηB

−
(
ηeff
ηB

+
Geff

GB

)
exp(−t/τeff )

)
(SI.1.14)

At t = 0, the shear rate of fluid i is equal to the ratio Geff/Gi and at long times as t → ∞ is

equal to ηeff/ηi for the respective fluid i = A,B. The difference between the applied shear rate

γ̇0 and the shear rate in either fluid region grows as the fluid properties become more dissimilar.

This model predicts the shear rates in each region will be different almost immediately if the

elastic moduli are different; however, in real shear-banding systems, some time is required for
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heterogeneity to develop in the flow. Recall the adjacent UCM model is an approximation of steady

shear-banded flow and therefore cannot make accurate predictions about the transient formation of

flow heterogeneity and shear-bands.

SI.2 Germann-Cook-Beris model

For additional details, refer to1,2.

ρ
∂v

∂t
= −ρv · ∇v −∇p+∇ · σ (SI.2.1)

∂nA

∂t
= −∇ · (v nA)− cA nA +

1

2
cBn

2
B (SI.2.2)

∂nB

∂t
= −∇ · (v nB) + 2cA nA − cBn

2
B (SI.2.3)

∂CA

∂t
= −∇ ·

(
vCA

)
+CA · ∇v − (∇v)T ·CA − 1

τA

(
CA − nAkb T

KA

I

)
− cAC

A + cBnBC
B

(SI.2.4)

∂CB

∂t
= −∇·

(
vCi

)
+Ci ·∇v−(∇v)T ·Ci− 1

τB

(
CB − nBkb T

KB

I

)
+cAC

A−cBnBC
B (SI.2.5)

σ = KAC
A − nAkBT I+KBC

B − nBkBT I+ ηS
(
∇v + (∇v)T

)
(SI.2.6)

cA = cAeq exp

[
TrσA

2nAkBT

]
/
√

det (KACA/nAkBT ) (SI.2.7)
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cB = cBeq exp

[
TrσB

nBkBT

]
/det

(
KBC

B/nBkBT
)

(SI.2.8)

Variables appearing in these equations are defined in Table S1. Equation SI.2.1 is the linear

momentum balance. The evolution of the number densities of species A and B is given by equa-

tions SI.2.2 and SI.2.3. By mass conservation, the total number of species nA + 1
2
nB is constant.

Equations SI.2.4 and SI.2.5 describe the evolution of the conformation densities Ci = cini of

species i = A,B. In these equations, τA and τB are the relaxation times of species A and B,

KA and KB = 2KA are the Hookean spring constants, kb is Boltzmann’s constant, and T is the

absolute temperature.

Equation SI.2.6 describes the extra-stress tensor, where the first four terms are related to the

extra stress of species A and B, and the last term is related to the viscous stress with solvent

viscosity ηS . Equations SI.2.7 and SI.2.8 detail the breakage and reformation rates, where cA,eq

and cB,eq are the equilibrium breakage and reformation rates at rest. In an equilibrium rest state

(v = 0, p = 0) with cA = cA,eq and cB = cB,eq, the analytical solution to these equations is3:

nA = n0
A, nB = n0

B =
√
2n0

AcA,eq/cb,eq, Ci = (n0
i kbT/Ki)I for i = A,B.

SI.2.1 Non-dimensionalization

These equations are non-dimensionalized to produce the dimensionless variables and parameters

in Table S2, which were used in prior work.2.

The system of equations below assume 1D flow vr = vz = 0, negligible inertia El−1 = 0,

the use of cylindrical coordinates (r, θ, z), and the non-dimensionalization in Table S2. The ‘∼’

symbol over variables denoting dimensionless quantities is omitted for convenience.

dnA

dt
=

1

µ

(
−cAnA +

1

2
cbn

2
B

)
(SI.2.9)

dnB

dt
=

1

µ

(
2cAnA − cbn

2
B

)
(SI.2.10)
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Table S1: Key dimensional variables and parameters

Variable Symbol

Fluid velocity v

Pressure p

Extra-stress tensor σ

Number density of species i ni

Breakage rate cA

Reformation rate cB

Conformation density tensor Ci

Parameter Symbol

Plateau modulus G0

Effective relaxation time τeff

Density ρ

Gap width H

Inner cylinder tangential velocity U0

Hookean spring constant of species A KA

Equilibrium breakage rates cA,eq

cB,eq

where i = A,B

dCA
rr

dt
=

1

µ

(
−(CA

rr − nA)− cAC
A
rr + cBnBC

B
rr

)
(SI.2.11)

dCA
rθ

dt
= CA

rr

(
dvθ
dr

− vθ
r

)
+

1

µ

(
−CA

rθ − cAC
A
rθ + cBnBC

B
rθ

)
(SI.2.12)

dCA
θθ

dt
= 2CA

rθ

(
dvθ
dr

− vθ
r

)
+

1

µ

(
−(CA

θθ − nA)− cAC
A
θθ + cBnBC

B
θθ

)
(SI.2.13)

dCA
zz

dt
=

1

µ

(
−(CA

zz − nA)− cAC
A
zz + cBnBC

B
zz

)
(SI.2.14)
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Table S2: Key dimensionless variables and parameters

Variable Symbol Expression

Time t̃ t/τeff = t/ [τA/(1 + cA,eqτA)]

Spatial position x̃ x/H

Radial coordinate r̃∗ r/H − 1/q

Pressure p̃ p/G0 = p/n0
AkbT

Number density ñi ni/n
0
A

Reaction rates c̃A τAcA

c̃B τAcBn
0
A

Stress σ̃i σi/G0

Conformation density C̃i Ci(KA/G0)

Parameter Symbol Expression

Elasticity number El G0τ
2
eff/ρH

2

Viscosity ratio β ηS/η0

Relaxation time ratios ϵ τB/τA

µ τA/τeff

Equilibrium reaction rates c̃Aeq τAcAeq

c̃Beq τAcBeqn
0
A

Curvature q (Ro −Ri)/Ri

Weissenberg number Wi τeffU0/H

dCB
rr

dt
=

1

ϵµ

(
−(CB

rr −
1

2
nB) + ϵ(cAC

A
rr − cBnBC

B
rr)

)
(SI.2.15)

dCB
rθ

dt
= CB

rr

(
dvθ
dr

− vθ
r

)
+

1

ϵµ

(
−CB

rθ + ϵ(cAC
A
rθ − cBnBC

B
rθ)

)
(SI.2.16)

dCB
θθ

dt
= 2CB

rθ

(
dvθ
dr

− vθ
r

)
+

1

ϵµ

(
−(CB

θθ −
1

2
nB) + ϵ(cAC

A
θθ − cBnBC

B
θθ)

)
(SI.2.17)
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dCB
zz

dt
=

1

ϵµ

(
−(CB

zz −
1

2
nB) + ϵ(cAC

A
zz − cBnBC

B
zz)

)
(SI.2.18)

These time evolution equations govern the number densities of species A and B along with the

conformation tensors. The velocity is specified by the momentum balance:

0 =
dCA

rθ

dr
+ 2

dCB
rθ

dr
+ β

[
d2vθ
dr2

− dvθ
dr

1

r
+

vθ
r2

]
+ 2

σrθ

r
(SI.2.19)

In the above equations, the remaining unknown quantities are provided by the following rela-

tions. Shear stress is given by:

σrθ = CA
rθ + 2CB

rθ + β

(
dvθ
dr

− vθ
r

)
(SI.2.20)

and the reaction rates are:

cA = cAeq exp

[
TrσA

2nA

]
/
√

det (CA/nA) (SI.2.21)

cB = cBeq exp

[
TrσB

nB

]
/det

(
2CB/nB

)
(SI.2.22)

where σA = CA − nAI and σB = 2CB − nBI

The boundary condition in dimensionless form is:

ṽθ(r̃
∗ = 0) = Wiapp tanh(at) (SI.2.23)

SI.2.2 Numerical solution

The r-domain was discretized using a Chebyshev pseudospectral collocation method.4,5 A total of

N = 200 collocation points was used for discretization similar to prior work2. The resulting set

of ordinary differential equations was integrated in time using the MATLAB ode15s variable-step,

variable-order solver.6
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SI.3 Additional rheology details

The rheological properties of P234-NaCl and P234-NaF are very different, thus distinct rheology

protocols were used. P234-NaCl rheology is very sensitive to the thermal treatment and sample

age7; thus the pre-shear, thermal treatment, and rejuvenation protocols are almost identical to those

in Ref. 7. In brief, the sample was rejuvenated between measurements by switching to a chiller

operating at 20 ◦C. The sample was sheared continuously γ̇ = 1 s−1 at 20 ◦C for five minutes

followed by a five-minute rest period to destroy any residual structure. Then the flow cell was

reattached to the heat bath (38.5 ± 0.1 ◦C) to heat the sample and reform WLMs.

The formation and growth of P234-NaCl WLMs at 38.5 ◦C were monitored by continuous

small amplitude oscillatory shear (SAOS) at strain amplitude and frequency γ0 = 1 % and ω = 1

rad/s, respectively. Prior to nonlinear rheology, the sample was aged until the storage modulus

reached G′ = 24 Pa, the same value as in Ref. 7 when D2O was used as a solvent. Evaporation

had a minimal effect between trials, as frequency sweeps (γ0 = 1 %, ω = 1−10 rad/s) before each

trial were nearly identical. Flow curves were measured using both controlled stress (creep) and

controlled shear rate protocols. Creep measurements were performed for 2 - 3 h at shear stresses

σ = 1 − 15 Pa. The low-shear rate region (γ̇ = 0.02 − 0.0005 s−1) was measured via a ramp-

down protocol where the shear rate was incrementally reduced, measuring the stress response for

2 h before proceeding to the next shear rate. Shear startup tests, where the shear rate is increased

suddenly to a constant value from rest, captured the flow curve behavior at higher γ̇ = 0.1 and 0.5.

For P234-NaF, a ten-minute equilibration period at T = 43.5 ◦C preceded all measurements,

also monitored with SAOS (γ0 = 1%, ω = 1 rad/s). The sample was rejuvenated between trials

using the same cooling protocol applied to P234-NaCl. The P234-NaF flow curve was measured

to identify the likely shear banding region. These WLMs did not have a yield stress, thus a single

ramp-up shear rate protocol (γ̇ = 0.02− 10 s−1) captured both the Newtonian region (low γ̇) and

the shear-banding plateau (intermediate γ̇). The onset of the shear banding plateau agreed with the

expected value for viscoelastic WLMs γ̇τ ∼ 18, where the relaxation time τ was calculated from

the crossover of G′ and G′′, measured in a frequency sweep.
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SI.4 Velocity estimation from particle trajectory fits

The desired information from rheo-PTV measurements is the velocities of a set of particles at time

points of interest, which can be sorted by gap position to construct velocity profiles. However, the

measured data from rheo-PTV experiments are the particle positions, xi = (xi(t), yi(t)) for each

particle i. Therefore, the goal of rheo-PTV analysis is to estimate for each particle the velocity,

vi(t), which satisfies the kinematics equation:

xi(t) = xi
0 +

∫ t

t=0

vi(t)dt (SI.4.1)

where xi
0 is the initial position and vi(t) the velocity vector. This work assumes two functional

forms for vi(t). For calculations over short time intervals – such that a particle’s velocity does

not change significantly – the velocity is assumed to be roughly constant and equal to an average

value: vi(t) ≈ vi
avg. The expected value of the particle position at time tn is then:

E(tn) = xi
0 + vi

avg(tn − t0) (SI.4.2)

The value of vi
avg(x

i) is estimated by minimizing the sum of the residuals of the known and

predicted positions along the particle trajectory from t = t0 to tN−1: Ti = (xi
0,x

i
1, ...,x

i
N−1)

with N recorded positions within the time interval. The following sum is minimized, which is

analogous to fitting the particle trajectory by varying vi
avg(x

i) and xi
0:

N−1∑
n=1

xi(tn)− E(tn) =
N−1∑
n=1

(xi(tn)− xi
0)− vi

avg(tn − t0) (SI.4.3)

The flows in this study follow arced trajectories that are concentric with the inner and outer

cylinders, and therefore representing particle positions in polar coordinates (r, θ) is more conve-

nient. In this coordinate system, the particle velocities are nearly one-dimensional such that the

average velocity along the radial coordinate can be assumed to be zero: vi
avg,r = 0. The residual

equation SI.4.4 can be rewritten as:
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N−1∑
n=1

si(tn)− E(tn) =
N−1∑
n=1

(si(tn)− si0)− viavg,θ(tn − t0) (SI.4.4)

where s(tn) = rθ(tn) is the arc-length relative to the positive x-axis.

For cessation of flow experiments where particles continuously decelerate, functions of ex-

ponentials were also used to model particle displacement, d, relative to the position at t0. The

specific functions are detailed in sections SI.4.2 and SI.4.3. The velocity is calculated from these

displacement functions:

d(t) = si(t)− si0 =

∫ t

t=0

viθ(t)dt (SI.4.5)

d

dt
d(t) = viθ(t) (SI.4.6)

SI.4.1 Comparison of trajectory fitting vs. standard PTV analysis

The key advantage of the trajectory fitting approach is that it produces a more representative esti-

mate of the uncertainty of the particle velocity compared to standard PTV analysis. In the standard

PTV analysis method, the average velocity of a particle over a time interval is estimated from

displacements between successive image acquisitions:

vθ,avg =
1

N − 1

N−1∑
n=1

(si(tn)− si(tn−1))

∆t
=

1

N − 1

N−1∑
n=1

viθ,n (SI.4.7)

where si(tn)− si(tn−1) is the displacement of a particle between two images recorded at times tn

and tn−1, and ∆t = tn − tn−1 is the time elapsed between image acquisitions (the inverse of the

framerate). Over the same time interval, both approaches provide similar estimates of a particle

velocity (Figure S1), but the uncertainties of the velocities calculated from the standard PTV anal-

ysis, which is the standard deviation of the particle velocities from vθ,avg, are significantly larger.

With these uncertainty values, differentiating reliable data from experimental noise is challenging.

Unpacking the reason for this difference is beyond the scope of this work and is discussed in detail

S12



elsewhere9. Briefly, careful analysis of the uncertainty reveals that the standard deviation used in

the standard PTV analysis is not the appropriate metric for the velocity uncertainty.

Figure S1: Comparison of velocity profiles ((c) and (d) in Figure S12) calculated using the tra-
jectory fitting approach, assuming an average velocity over a short time interval, and the standard
PTV analysis of calculating velocities from displacements between successive image acquisitions
and averaging these over a short time interval.

SI.4.2 Cessation of flow displacement fits: P234-NaF

Particle trajectories for P234-NaF were fit with two functions. For tc = 3 and 540 seconds, a single

exponential function was fit to the trajectories:

d = A exp

(
−t

τv

)
+D (SI.4.8)

where d is the displacement of the particle, τv is the relaxation time, and A and D are constants that

depend on the magnitude of the displacement. A sample fit of this model to a particle trajectory

is shown in Figure S2a. Given this equation for the displacement, the equation for the particle

velocity is:

vθ = −A

τv
exp

(
−t

τv

)
(SI.4.9)

For the cessation of flow trial that begins at tc = 14 s, the displacement could not be described
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Figure S2: Sample particle trajectories fit with a single relaxation time exponential decay (a) and
a sigmoid decay (b). Particle trajectories for tc = 3 and 540 s were fit with an exponential decay
function and for tc = 14 with a sigmoid function.

by an exponential function. Instead, a sigmoid function was fit to these trajectory data:

d =
A

1 + exp(t/τv)
+D (SI.4.10)

The corresponding equation for the velocity is:

vθ =
−A exp(t/τv)

τv [1 + exp(t/τv)]
2 (SI.4.11)

After a few relaxation times, equation SI.4.11 converges toward the velocity equation SI.4.9:

vθ =
−A exp(t/τv)

τv [1 + exp(t/τv)]
2 ≈ vθ = −A

τ
exp

(
−t

τv

)
(SI.4.12)

An example fit of the sigmoid function to a particle trajectory for tc = 14 s is shown in Figure

S2b. The particle trajectory may relax differently in this case due to the substantial positive motion

of the thin fluid layers at either cylinder boundary, which competes with the retraction in the bulk

(Figure S11a).

An ensemble of trajectories spanning the gap was fit with these displacement functions. For

these P234-NaF trials, the motion of 0.1 mm boundary layers near either cylinder wall was not

fitted. The time constants from each trajectory were averaged and are shown in Table 2 in the main
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text. Greater than sixty time constants were averaged in each case.

SI.4.3 Cessation of flow displacement fits: P234-NaCl

Particle trajectories for all P234-NaCl trials were fit with a sum of two exponentials:

d = A exp(−t/τv,1) + C exp(−t/τv,2) +D (SI.4.13)

where similar to the P234-NaF fits, d is the particle displacement, τv,1 and τv,2 are time constants,

A, C, and D are constants related to the magnitude of the displacement. The corresponding veloc-

ity of the particle is given by:

vθ = − A

τv,1
exp

(
−t

τv,1

)
− C

τv,2
exp

(
−t

τv,2

)
(SI.4.14)

An example fit of the particle trajectory for P234-NaCl is shown in Figure S3. The two exponential

model fits the displacement data reasonably well, except for a brief period of rapid retraction at

the onset of cessation of flow. Similar to the P234-NaF trials, an ensemble of trajectories was fit to

compute average time constants.

Figure S3: Sample particle trajectory fit with a sum of two exponentials with time constants τv,1
and τv,2.
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SI.4.4 Comparison of velocity profiles obtained by fitting full-trajectories

vs. trajectory segments

Comparison of velocity profiles calculated during cessation of flow by fitting full-duration trajec-

tories with an exponential-type function or by fitting a segment of the trajectory over a short time

interval assuming a constant velocity, which is the approach used in shear startup. The velocity

profiles obtained with both approaches agree favorably (Figure S4). Fitting an exponential-type

function across a broad time range is advantageous because the velocity can easily be calculated at

any time from the fits. However, this approach could not be applied to all particles. In particular,

particles near the boundaries in P234-NaF could not be well-described by decaying exponentials.

Additionally, this approach neglects particles tracked for shorter durations. In these cases, particle

velocities in cessation of flow must be calculated over short time intervals assuming a roughly

constant velocity. The length of the averaging interval was informed by the fits of entire particle

trajectories; as the particles slowed down, the averaging time increased.

Figure S4: Sample velocity profiles in cessation of flow obtained using two methods. In one
method, particle trajectories were fit over short intervals in which an average particle velocity
was assumed. The other method fits entire particle trajectories assuming a decaying exponential
functional form (see Section SI.4), and the velocity is computed at a certain time from this function.
The results of both approaches agree favorably.
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SI.4.5 Variation of particle relaxation time with gap position

Figure S5: (a) Relaxation of the particle velocity, τv,1, as a function of gap position, r/H , for
P234-NaF at tc = 3, 14, and 540 s. (b) and (c) Relaxation times τv,1 and τv,2 as a function of gap
position for P234-NaCl at select tc = 17 and 600 s. Across both samples and all tc (including trials
not shown), the relaxation time tends to have the least scatter near the center of the geometry or the
interface between heterogeneous regions where the particle velocities are greatest. The relaxation
times of particles near the boundaries could not be estimated due to the low signal-to-noise ratio
as particles near the wall are nearly immobile. Furthermore, the velocities of particles near the
inner cylinder are difficult to determine for higher tc due to strong WLM alignment near the inner
boundary, leading to substantial scattering of the light reflected from the particles.7
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SI.5 Shear startups and velocity profiles before cessation of flow

Figure S6: Velocity profile immediately before cessation of flow of P234-NaF for tc =3 and 14
seconds. The velocity profile is nearly linear in both cases, consistent with the full-length startup
in Figure 3c.

Figure S7: Shear startups of P234-NaCl performed prior to cessation of flow ending at tc =1.2,
17, 60, 150, 600, and 2150 seconds. The shear startups ending at tc = 1.2, 17, and 2150 seconds
are also plotted in the main text Figure 5a. The evolution of the shear stress agrees across trials.
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Figure S8: Velocity profiles immediately before cessation of flow of P234-NaCl for (a) tc =1.2
and 17, (b) tc = 60, (c) tc = 150, and (d) tc = 600 seconds. These velocity profiles in these
shorter-length startups are consistent with the full-length startup (tc = 2150 s) in Figure 3.
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SI.6 Comparison of 15% wt P234 with 2M NaCl in water vs.

D2O

The rheology of 15% wt P234 with 2M NaCl was analyzed in depth with D2O as a solvent in prior

work.7 Here, water is used as a solvent and the supplier of the poloxamer is different. Whereas the

stress plateaued with decreasing applied shear rate in this previous work,7 here a distinct region

of changing shear stress at low shear rates is observed. The shear stress appears to plateau briefly

with decreasing applied shear rate, and the value of the shear stress in this small plateau region is

similar in value to the dynamic yield stress reported previously.7 Here, the variation in shear stress

at the lowest shear rates could actually represent a new regime of behavior or could be an artifact

from insufficient measurement time or sample evaporation. Further consideration of this region is

deferred to future study. However, for comparison to prior work, a frequency sweep of P234-NaCl

in water at 38.5 ◦C is shown below in Fig. S9, following aging until the storage modulus reached

G′ = 24 Pa (same value as in Ref. 7 when D2O was used as a solvent).

Figure S9: Frequency sweep of P234-NaCl at 38.5 ◦C following aging
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SI.7 Individual cessation of flow velocity profiles

Velocity profiles for individual cessation of flow trials for P234-NaF and P234-NaCl are shown

below. For trials in which the flow was stopped after heterogeneous flow had already formed,

interesting behaviors with respect to the gap position, r/H , of the maximum retraction magnitude

are observed.

For example, for stop times near the onset of heterogeneous flow like in P234-NaCl at 17 s

(Fig. S13) and P234-NaF at 540 s (Fig. S12), a slight shift to lower r/H in time as the retraction

magnitude decreases; this trend is consistent with GCB model predictions when the flow is also

stopped at early times before the band interface is sharp (Fig. 9e). The movement of the interface

position to slightly lower r/H as the band interface becomes sharper is also observed upon shear

startup in the GCB model (Fig. 8).

However, when the heterogeneous flow regions are fully formed and a sharp interface has

formed between regions prior to stopping flow, no change in interface position is observed in GCB

simulations upon flow cessation (Figs. 9f, S23). In experiments, a shift in the maximum retraction

magnitude occurs toward higher (not lower) r/H (Figs. S14 -S17). This shift to higher r/H after

longer stop times is not captured by the GCB model.
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SI.7.1 P234-NaF

Figure S10: Velocity profiles of P234-NaF after tc = 3 s of shear startup flow at γ̇ = 1 s−1. These
velocity profiles are plotted together in Figure 4e in the main text. Note the y-axis scale may differ
between panels.
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Figure S11: Velocity profiles of P234-NaF after tc = 14 s of shear startup flow at γ̇ = 1 s−1. These
velocity profiles are plotted together in Figure 4f in the main text. Note the y-axis scale may differ
between panels.
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Figure S12: Velocity profiles of P234-NaF after tc = 540 s of shear startup flow at γ̇ = 1 s−1.
These velocity profiles are plotted together in Figure 4g in the main text. Note the y-axis scale may
differ between panels.
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SI.7.2 P234-NaCl

Figure S13: Velocity profiles of P234-NaCl after tc = 17 s of shear startup flow at γ̇ = 0.5 s−1.
These velocity profiles are plotted together in Figure 5f in the main text. Note the y-axis scale may
differ between panels.
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Figure S14: Velocity profiles of P234-NaCl after tc = 60 s of shear startup flow at γ̇ = 0.5 s−1.
These velocity profiles are plotted together in Figure S22d in Section SI.9. Note the y-axis scale
may differ between panels.
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Figure S15: Velocity profiles of P234-NaCl after tc = 150 s of shear startup flow at γ̇ = 0.5 s−1.
These velocity profiles are plotted together in Figure S22e in Section SI.9. Note the y-axis scale
may differ between panels.
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Figure S16: Velocity profiles of P234-NaCl after tc = 600 s of shear startup flow at γ̇ = 0.5 s−1.
These velocity profiles are plotted together in Figure S22f in Section SI.9. Note the y-axis scale
may differ between panels.
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Figure S17: Velocity profiles of P234-NaCl after tc = 2150 s of shear startup flow at γ̇ = 0.5 s−1.
These velocity profiles are plotted together in Figure 5g in the main text. Note the y-axis scale may
differ between panels.
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SI.8 Shear stress fits

The decay of the shear stress in cessation of flow for both P234-NaF and P234-NaCl was fit with

a sum of two exponentials:

σ = a exp(−bt) + c exp(−dt) (SI.8.1)

Fits of the shear stress for P234-NaF are shown in Figure S18 and for P234-NaCl in Figure S20.

Screenshots of tables of the fit parameters for P234-NaF and P234-NaCl are shown in Figures S19

and S21, respectively. Note for P234-NaF, the parameters are for fits to the normalized stress,

σ/σc.

SI.8.1 P234-NaF

Figure S18: Shear stress fit to a sum of two decaying exponentials for P234-NaF in cessation of
flow: tc = 3 s (a), 14 s (b), and 540 s (c).
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Figure S19: Fitting function and fit parameters for the shear stress fit to a sum of decaying expo-
nentials in cessation of flow of P234-NaF. Fit parameters are shown for each trial: tc = 3 s, 14 s,
and 540 s.
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SI.8.2 P234-NaCl

Figure S20: Shear stress fit to a sum of two decaying exponentials for P234-NaCl in cessation of
flow: tc = 1.2 s (a), 17 s (b), 60 s (c), 150 s (d), 600 s (e) and 2150 s (f). The fits become better as
the time before cessation tc increases. This behavior potentially indicates that aging effects, which
are most substantial at earlier times, impact the stress relaxation.
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Figure S21: Fitting function and fit parameters for the shear stress fit to a sum of decaying expo-
nentials in cessation of flow of P234-NaCl. Fit parameters are shown for each trial: tc = 1.2 s, 17
s, 60 s, 150 s, 600 s, and 2150 s.
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SI.9 Supplementary cessation of flow measurements for P234-

NaCl

Figure S22: Shear stress (a-c) of P234-NaCl in cessation of flow started after tc = 60, 150, and
600 seconds of startup flow at γ̇ = 0.5 s−1. The corresponding velocity profiles for each shear
startup are shown the panel below (d-f). The shear stress is normalized by the final shear stress
measured in shear startup, σc (Startups shown in Figure S7). Representative velocity profiles (d-f)
are shown at four times during the cessation of flow. Velocity profiles are plotted individually in
Section SI.7.2.
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SI.10 Additional GCB model data

Similar to the results for two adjacent UCM fluids, heterogeneity in the distribution of species A

and B across the gap causes fluid retraction in cessation of flow; however here, fluid retraction

practically ceases well before the shear stress fully relaxes (Fig. 9a-c vs. d-f). In cessation of flow

performed after shear-banded flow has fully developed (tc/τeff = 4 at Wi = 5; Fig. S23), the

stress relaxes rapidly for a brief period (t∗/τeff < 0.2) and then slows to a more gradual relaxation

rate (Fig. S23a). Substantial fluid retraction is observed only during the initial rapid relaxation

period (Fig. S23b). Two discrete populations are still present when retraction has essentially

stopped (Fig. S23c, t∗/τeff = 0.2), but the shear stress held by species B has decayed to practically

zero by this time (Fig. S23d, t∗/τeff = 0.2). Therefore, the vast majority of the shear stress is held

only by species A beyond this time, and the difference in relaxation rate will not be substantial

enough to cause noticeable retraction. Consequently, the timescale for retraction coincides with

the timescale for the excess shear stress held by species B to dissipate.

After the excess shear stress held by species B is dissipated, a very minor amount of fluid re-

traction accompanies the remaining stress relaxation due to the slight shear stress gradient of the

concentric cylinder flow geometry. To help visualize this small degree of retraction, the minimum

velocity at any time during retraction, vmin (e.g. apex of the velocity profiles in Fig. 9d-f), is

compared for each stop time tc/τeff after shear startups (Wi = 5) (Fig. S24). The initial velocity

in cessation of flow is an order of magnitude slower when the initial fluid microstructure is approx-

imately homogeneous (Fig. S24, tc/τeff = 0.2, 0.45) compared to when the fluid microstructure

is significantly heterogeneous (Fig. S24, tc/τeff = 0.6, 0.75 and 4), and the decay rate differs

greatly. When the starting fluid microstructure is heterogeneous, the retraction speed decelerates

much faster than when the microstructure is more homogeneous. At long times when the distri-

bution of species and shear stress held by each component homogenizes, the fluid retraction speed

decays at roughly the same rate for all trials, with a time constant roughly equal to the effective

relaxation rate τeff .
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Figure S23: Cessation of flow after shear startup (tc = 4τeff ) at Wi = 5. (a) Shear stress evolution
at the inner cylinder (r/H = 0). Normalized velocity (b), normalized number density of species
B (c), and normalized shear stress of species B as a function of r/H (d) at four times during the
stress relaxation (denoted by ◦, inset of (a)). Shear stresses are normalized by the elastic modulus
at rest, G0, the velocity is normalized by the imposed wall velocity v0, and the number densities of
species B are normalized by the number density of species A at rest, nA,0.

Figure S24: Evolution of vmin in cessation of flow started after startup at Wi = 5 stopped at five
times tc/τeff . Velocity is normalized by the imposed wall velocity v0 for easier comparison.
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SI.11 Decay of visible light scattering in P234-NaF

Figure S25: Rheo-PTV images collected (a) t − tc = 0 and (b) t − tc = 3 seconds after the
start of cessation of flow for tc = 540 s. Light scattered from the high-shear-rate band of fluid is
significantly greater than the low-shear-rate band at the beginning of cessation, but this difference
dissipates in a few seconds, a rate consistent with the fast relaxation process measured from fits to
the particle trajectories and shear stress.
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