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Numerical methods 
Coarse-grained model of tumor-ECM system 

We utilized a coarse-grained (CG) modeling approach to simulate the interaction between tumor 

spheroids and ECM fibers, as depicted in Fig. 1S. Specifically, the CG model represented the 

membrane and cytoskeleton of a cell using CG particles, the interaction of which was modeled by 

bonded or nonbonded interaction (Fig. S1B). The bonded interactions modeling cell membrane 

tension and tensional force in the cytoskeletal were referred to as intracellular forces. The non-

bonded interactions between neighboring cells, referred to as intercellular forces, can be disrupted 

and reformed once broken. These non-bonded interactions enable us to simulate the detachment 

of cells from the tumor and the long-distance migration of tumor cells (Fig. S1C&D). The cell 

structure may be deformed by its active contraction and external forces from neighboring cells 

within the system. Figure S1D highlights the intracellular and intercellular forces considered in 

the multi-cellular model system. In previous studies, the CG model was extensively utilized to 

examine the collective cell motion on the patterned surfaces and wound formation within a single 

cell layer when subjected to cyclic stretching.1, 2 

    The ECM fibers were also discretized using CG particles that are connected by bonded 

interactions. In addition, bonded interaction was used to model the crosslinking between/among 

fibers which allowed for the formation of a network (Fig. S1E). Density was adjustable and the 

orientation of the fibers in the network was randomly established.  

Electronic Supplementary Material (ESI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2024



 2 

The interaction between cells and ECM fibers is modeled by Lennard-Jones potential between 

particles of the cell and those of fibers within a distance threshold. 

The driving force for cell migration is generated by the interaction force between cell and 

matrix fibers via focal adhesions, called cell traction force.3 Both experiments and theories4 

indicate that the magnitude of traction force is governed by the so-called traction-distance law. 

Hence, the traction force depends on the cell's size and degree of polarization. For a polarized cell, 

the traction force is often simplified by a force dipole.5, 6 The driving force is equal to the net 

traction force at the critical point of detaching of the cell rear.  

In addition, we considered the cell area as constant; therefore, we applied area constraints on 

the cell. A cortex-like membrane is introduced at the boundary of the tumor spheroid to mimic the 

basement membrane (Fig. S1C). The cortex is usually formed cross multiple cells at the periphery, 

which constrict the tumor cells.7-9 

In summary, each node in the model is subjected to multiple forces, including the intercellular 

force 𝑭!!"#$%, the intracellular force 𝑭!!"#%&, the active contraction force 𝑭!&'#!($, the driving force 

of cell motion 𝑭!
)%!(!"*, the area constraint force 𝑭!&%$&, the constraint force from the basement 

membrane 𝑭!+&,$-$"#, and the cell traction force between cell and fiber 𝑭!&).$,!/" (as depicted 

in Fig. 2D). The motion of CG particles indexed with i (where i =1…N) is governed by the 

Langevin equation1, 2 

𝑚!
)!𝒓"
)#!

= −𝑚!𝛾!
)𝒓"
)#
+ 𝑭!1$,23#&"#(𝒓) + 𝒓

°
!(𝑡)            (1) 

where the resultant force on each node 

𝑭!1$,23#&"#(𝒓) = 𝑭!!"#%&(𝒓) + 𝑭!!"#$%(𝒓) + 𝑭!&%$&(𝒓) + 𝑭!&'#!($(𝒓) + 𝑭!+&,$-$"#(𝒓) +

𝑭!
)%!(!"*(𝒓) + 𝑭!&).$,!/"(𝒓)       (2) 

and 𝑚! represents the mass of the particle, while	 𝛾! is the friction constant. The random force, 

which is represented by Gaussian white noise to account for the thermal fluctuations, is denoted 

by 𝒓
°
!(𝑡).  
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𝐅!intra(𝐫) includes the intracellular force between particles in the membrane (𝐅!membrane) and 
those in the cytoskeleton (𝐅!skeleton) of one cell. The intracellular force between the CG particles in 

the membrane is described as 𝐅!membrane = .𝐸membrane𝜀!A1𝐫2!A , 𝐸membrane = 9 × 10B 𝑝𝑁 𝜇𝑚⁄  is 

the elasticity of the membrane.1 𝐅!skeleton = ∑ <𝜇,C$3$#/"
DE"#
D#
+ 𝐸,C$3$#/"𝜀!A= 𝐫2!A

F"
AGH  describes the 

intracellular force for particles in the cytoskeleton.1 The parameters 𝜇,C$3$#/" = 0.3	𝑝𝑁	𝑠/𝜇𝑚 
and 𝐸,C$3$#/" = 35	𝑝𝑁/𝜇𝑚  are the viscoelastic and the elastic coefficients of the skeleton, 
respectively.10 𝜀!A is the deformation between particles i and j, and 𝐫2!A is the unit vector pointing 
from particles i to j. 

𝐅!inter  represents the intercellular force between the CG particles at the cell boundaries, 

characterizing the cell-cell interaction. The force 𝐅!inter  is comprised of the normal and shear 

components11, 12 
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where 𝑓!" and 𝑓!# represent the normal and shear intercellular forces, respectively. Additionally, 

the maximum values of 𝑓!"  and 𝑓!#  are denoted by the parameters σP  and 𝜏' , respectively. 

According to previous studies, the parameters σP and 𝜏' were set to be 1100 𝑝𝑁/𝜇𝑚Q and 550 

𝑝𝑁/𝜇𝑚Q, respectively.1, 2, 13 𝑟!A" and 𝑟!A#  are the normal and tangential distances between particles 

i and j, respectively. The equilibrium distance of the intercellular interaction is set as 𝛿R = 0.5𝜇𝑚. 

The critical lengths for the maximum values of 𝑓!" and 𝑓!# are 𝛿)" = 1𝜇𝑚 and 𝛿)# = 1𝜇𝑚, 

respectively. 𝛿M" = 2𝜇𝑚 and 𝛿M# = 2𝜇𝑚 are the cutoff lengths used to calculate the interaction 

forces.1, 2 

The model explicitly incorporates 𝐅!active to account for the active contraction of the cell. 

Based on the traction-distance law and prior experimental findings, the tension force in the cell is 

approximately proportional to the distance from the cell edge to the cell center.4 According to 

earlier studies, the tension force for a polarized cell can be modeled as a force dipole.5, 6 In this 
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model, the active contraction force is described by 𝐅!active = 𝑘)(𝐫! − 𝐫!R) based on the traction-

distance law. The parameter 𝑘) = 10	𝑝𝑁/𝜇𝑚 characterizes the cell contraction strength,4, 14 𝐫! 

represents particle i’s position vector, and 𝐫!R stands for the position vector of the cell center.1, 2 

The force of the areal constraint is denoted by F!area = − C1(VIV%)
V%

DV
D%"

. The constant of the 

areal constraint is represented by the parameter 𝑘& = 5 × 10B	𝑝𝑁/𝜇𝑚.1, 2, 15 𝐴R refers to the cell 

area in its original state. The cell area 𝐴 of current state is determined by the Gauss’s area formula 

which is given by 𝐴 = H
Q
[(𝑥H𝑦Q − 𝑥Q𝑦H) + (𝑥Q𝑦X − 𝑥X𝑦Q) + ⋯+ (𝑥"𝑦H − 𝑥H𝑦")]. Here, 𝑥! and 

𝑦! correspond to the ith particle’s Cartesian coordinates in the cell membrane. 

The imbalance of cell traction force during detachment of the cell rear generates the driving 

force for cell migration.3 This is related to the degree of cell polarization and size. In this model, 

we describe the self-driving force for active cell migration as F!
driving = 𝑘)(𝐿-&[ ln(𝐴𝑅!). Here, 

𝑘)( represents the intensity of the driving force of 1	𝑝𝑁/𝜇𝑚,1 while 𝐿-&[ denotes the length of 

the cell's long axis, and AR reflects the cell’s aspect ratio. 

There is a transcellular structure formed at the edge of tumor cell spheroids, called the 

basement membrane, which restricts the cells from detaching from the tumor spheroids.7 Using 

the eight-quadrant method, we dynamically identify new boundary points when some cells detach, 

and exclude the detached tumor cells during tumor invasion process. F!basement  represents the 

restricting force exerted on the ith point on the membrane due to the bending of the basement 

membrane (Fig. S1C): 

�⃗�!+&,$-$"# = Ƙ(𝑐𝑜𝑠𝛼 − 𝑐𝑜𝑠𝛼R) d
%⃗"2
%"#%"2

+ %⃗"#
%"#%"2

− 𝑐𝑜𝑠𝜃 I%⃗"#
%"#
! +

%⃗"2
%"2
! Jf − Ƙ(𝑐𝑜𝑠𝛽 − 𝑐𝑜𝑠𝛽R) d

%⃗#3
%#3%#"

−

𝑐𝑜𝑠𝛽 I%⃗#"
%#"
!Jf − Ƙ(𝑐𝑜𝑠𝛾 − 𝑐𝑜𝑠𝛾R) d

%⃗24
%2"%24

− 𝑐𝑜𝑠𝜃 I%⃗2"
%2"
! Jf                              (4)  

 
where Ƙ  is a force constant, 𝛼 , 𝛽 , 𝛾  are the current bond angles, and 𝛼R , 𝛽R , 𝛾R  is the 
equilibrium bond angles.7 

F!adhesion represents the force of adhesion between cells and the ECM fibers. We identify the 

fiber nodes 𝑗  within the threshold range of each cell node 𝑖 , then 𝐅!adhesion = ∑ .𝐹-&[ −]
AGH

𝑘&)𝐫!A1. Correspondingly, a reaction force will applied to the fiber nodes. Here, 𝑁 represents the 
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total number of fiber nodes within the threshold range, 𝐹-&[ is the maximum adhesion force of 

each node, and 𝑘&) represents a force constant.16 

 

Table S1 The definition of parameters in the numerical model and associated values 

 

 

 

Numerical simulation 

The tumor spheroids – fiber matrix system was first built with given cell density and fiber density. 

Of course, the density of cells and fibers was adjustable and the orientation of the fibers in the 

network was randomly established. For instance, the choice of fiber density in the simulation is 

based on the measurement in our experiments. According to the fiber density in our experiment, 

we determined the number of fibers in our simulation model, where the fibers were randomly 

arranged and formed a fiber network. In this way, we were able to ensure that the fiber density and 
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corresponding pore size in our model were consistent with our experiments. 

Prior to cell migration simulations, the cell layer underwent a short period of relaxation 

simulation. The simulations were conducted using a personalized FORTRAN solver. The explicit 

Euler method was utilized for the time propagation of the solution with a small time step to 

guarantee the solution stability.1, 2 Graphical and visual analysis were performed using the Visual 

Molecular Dynamics (VMD) package.17 

    In the simulation of cell migration, the cells could form adhesion with (at cell front) and 

detach from (at cell rear) the fibers during cell migration. Corresponding to the fiber density in our 

experiments, the pore size in the fiber matrix is smaller than the cell size, therefore there were few 

chances that cells could be trapped in the empty spaces between the network without any adhesion 

with surrounding fibers. This is consistent with our experimental observation. Second, we used a 

reasonable value for the cutoff for calculating the cell-fiber interaction force in our simulation, 

ensuring that the cells could normally find adjacent fibers to form adhesion.  

To determine the aspect ratio and angle of each cell, an ellipse was fitted to the cell shape. 

The least square method was utilized to fit the ellipse equation with the boundary particles’ 

coordinates.1, 2 Upon fitting, the central coordinates of the ellipse (xR，yR), the long axis radius a, 

the short axis radius b, and the cell angle θ between the long axis and the x-axis were obtained. 

Ultimately, the cell aspect ratio was calculated by dividing the long axis by the short axis of the 

ellipse. 

The virial stress of the CG particles was calculated in order to analyze the distribution of 

stress throughout the cell layer:18, 19 

    𝜎^_ =
H
`
∑ l−𝑚(!)<𝑢^

(!) − 𝑢n^=<𝑢_
(!) − 𝑢n_= +

H
Q
∑ <𝑥^

(A) − 𝑥^
(!)= 𝑓_

(!A)
A o	!	in	`              (5) 

where 𝑚(!) denotes the mass of the ith particle in the domain Ω, 𝑥(!) is the position vector of 

particle i, with Cartesian components represented as <𝑥^
(!), 𝑥_

(!)= = .𝑥(!), 𝑦(!)1. 𝑢(!) denotes the 

velocity vector of particle i, while 𝑢n denotes the local average velocity of the particles in the 

domain Ω. Finally, 𝑓(!A) represents the force generated by particle j on particle i.1, 2 
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Fig. S1 Coarse-grained model of interaction between tumor spheroids and fibrous matrix. (A) 
Schematic illustration of the dual tumor-spheroids embedded in the fibrous matrix. The interaction between 
cells and ECM fibers is modeled by Lennard-Jones potential between particles on the cell and those of 
fibers within a threshold range. (B) CG model of a cell. The model comprises the cell membrane (black) 
and cytoskeleton (green). The membrane CG particles are laterally connected by springs as bonded 
interaction (red), while each of them is also linked to the central particle to model the cytoskeleton (green). 
(C) Schematic illustration of the tumor spheroid model. The cortical membrane is represented by a 
transcellular actin bundle-like structure at the boundary of the tumor spheroid. The boundary particles (red) 
are identified using the eight-quadrant method. If the number of boundary points in a single cell exceeds 
50% of the total number of particles in the cell, it is considered as a detached cell. The boundary points are 
changed dynamically during the simulation process. The inset illustrates particle i and its neighboring 
particles j, k, l, m for calculating the restricting force from the basement membrane. (D) Schematic 
illustration of the intracellular and intercellular forces. The model considers intracellular forces (interaction 
within the cell), intercellular forces (attraction and repulsion between cells), cell active contractile force, 
cell driving force, and area constraint force. Cell active force and the random perturbation force are not 
shown in the figure. (E) Schematic illustration of CG model of the ECM fibrous network. The fibers are 
randomly arranged to form a fibrous network with a given fiber density. Each fiber consists of a series of 
CG particles connected by elastic springs. The fibers are connected with bonded interaction at their 
intersection points (red dots) to mimic the crosslink between/among them in the network. The fibers can be 
deformed by the forces exerted by cells through cell-fiber adhesion, while the fiber stiffening because of 
the deformation will, in turn, influence cell-fiber adhesion. 
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Fig. S2 The alignment and re-arrangement of fibers around the single tumor spheroid under the active 
contraction of cells and tissue. (A) Fluorescent images of the remodeling of fiber matrix and cell detaching 
from tumor spheroid at 0, 2, and 4 hours. Red represents cells, and green represents collagen fibers. The scale 
bar is 50 𝜇𝑚. (B) Schematic illustration of the arrangement of fibers around the tumor and migration direction 
of tumor cell. Line a indicates the direction of cell polarization, line b indicates the direction of the line 
connecting the center of the tumor spheroid and the cell, and 𝜃 is the angle between these two lines. (C) 
Relationship between collagen fiber alignment and tumor cell invasion time. (D) Relationship between 𝜃 and 
tumor cell invasion time. (E) Fluorescent images of the invasion and non-invasion sites at 3h. Purple boxes 
represent non-invasion sites, and yellow boxes represent invasion sites. Red represents cells, blue represents cell 
nuclei, and green represents collagen fibers. The scale bar is 50 𝜇𝑚. (F) Normalized fiber density in the invasion 
and non-invasion sites. (G) Collagen fiber alignment coefficient in the invasion and non-invasion areas. The 
statistical analysis of panel F and G was conducted using the one-sample t-test method. 
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Fig. S3 Effect of collagen fiber density on tumor invasion for single tumor spheroid. (A) Representative 
fluorescence images of single tumor invasion for three different collagen concentrations: 0.5, 1, and 2 mg/ml. 
Red is for cells, and green is for collagen fiber. Scale bar, 50 μm. (B) Collagen fiber alignment near invading 
cells at 4 h after seeding of the tumor. (C) The number of invading cells per 100 μm arc length of tumor-spheroids 
over 4 h. (D) The aspect ratio of invading cells as a function of invasion time. (E) θ as a function of invasion 
time. (F) The average velocity of invading cells over 4 h. (G) The DPI of invading cells over 4 h. The statistical 
analyses in panels C, F, and G were performed using one-way ANOVA. 
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Fig. S4 Effect of collagen fiber density on tumor invasion at spheroid distance 240 μm. (A) Representative 
fluorescence images of tumor cell invasion into fiber matrix at various collagen concentrations: 0.5, 1, and 2 
mg/ml. The right panels are the corresponding cell paths/tracks of cell invasion. Red is for cells, and green is for 
collagen fiber. Scale bar, 50 μm. (B) The alignment of collagen fiber in the region between the two tumor-
spheroids. (C) The number of invading cells per 100 μm arc length of tumor-spheroids. (D) The aspect ratio of 
neighboring invading cells as a function of invasion time. (E) Cell angle θ as a function of invasion time. (F) 
The average velocity of neighboring invading cells over 4h. (G) The DPI of invading tumor cells over 4h. The 
statistical analyses in panels C, F, and G were performed using one-way ANOVA. 
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Fig. S5 Effect of tumor diameter on tumor invasion behaviors at a spheroid distance of 120 μm. (A) The 
alignment of the fibers in the region between the two tumor-spheroids for different spheroid diameters at t=4 h. 
(B) The number of invading cells per 100 μm arc length of tumor-spheroids at t=4 h. (C) The aspect ratio of 
invading cells as a function of invasion time. (D) Cell angle θ as a function of invasion time. (E) The average 
velocity of invading cells at t=4 h for different spheroid diameters. (F) The DPI of invading cells at t=4 h. The 
statistical analyses in panels A, B, E, and F were performed using one-way ANOVA. 
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Fig. S6 Effect of tumor diameter on tumor invasion for single tumor spheroid. (A) The mean time of cell 
detachment from tumor-spheroids for different spheroid diameters. (B) The number of invading cells per 100 
μm arc length of tumor-spheroids for different spheroid diameters at t=4 h. The statistical analyses in the figure 
were performed by using one-way ANOVA. 
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Fig. S7 Effect of cell contraction on tumor invasion behaviors for tumor spheroid distance of 120 μm. (A) 
Fluorescence images of tumor cell invasion after drug treatment (DMSO, 2 μM blebbistatin, and 10 μM 
blebbistatin) compared with control. Red is the cells, and green is collagen fiber. Scale bar, 50 μm. (B) The 
alignment of collagen fiber in the region between the two tumor-spheroids at t=4 h. (C) The number of invading 
cells per 100 μm arc length of tumor-spheroids at t=4 h. (D) The aspect ratio of invading cells as a function of 
invasion time. (E) Cell angle θ as a function of invasion time. (F) Effect of drug treatment on the mean velocity 
of invading cells. The statistical analyses in panels B, C, and F were performed using one-way ANOVA. 
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Fig. S8 Effect of cell contraction on tumor cell invasion for single tumor spheroid. (A) Fluorescence images 
of tumor invasion after drug treatment (DMSO, 2 μM blebbistatin, and 10 μM blebbistatin) compared with 
control. Red is the cells, and green is collagen fiber. Scale bar, 50 μm. (B) The alignment of collagen fiber near 
tumor spheroid at t=4 h. (C) The number of invading cells per 100 μm arc length of tumor-spheroids at t=4 h. 
(D) The aspect ratio of invading cells as a function of invasion time. (E) Cell angle θ as a function of invasion 
time. (F) The mean velocity of invading cells for different treating conditions. The statistical analyses in panels 
B, C, and F were performed using one-way ANOVA. 
 
  



 15 

 
Fig. S9 The non-monotonic relationship between the number of invading cells and fiber density. The 

number of cells was highest at 𝜌! (A), but when the fiber density decreases to 60%𝜌! (B) or increases to 

140%𝜌! (C) and 210% 𝜌! (D), the number of invasive tumor cells became lower. 
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