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Summary

In the supporting materials, we provide important details on the grid cell resolution of
the numerical simulations of a Dripping-onto-Substrate (DoS) experiment™™ and the fitting
methods implemented for the determination of the relaxation time of a polymer using DoS
rheometry. In the first section, we present the mesh convergence study for evaluating the
accuracy of the numerical simulations using the code Basilisk® to describe the thinning
dynamics of a viscoelastic filament in a DoS experiment. In the second section, we provide
a qualitative comparison between the predictions of the “Anna-McKinley” empirical model®
and the FENE-P analytical solution® in order to determine the apparent relaxation time of a
dilute polymer solution and we also capture the effect of the Bond number, the macroscopic
contact angle and the Deborah number on the fitting results. In the last section, we focus
on the predictions of the FENE-P analytical solution and we carefully inspect the fitting

results for the elastic modulus and the polymer chain extensibility.



Mesh Convergence Study

(a) 10—
Ba g G
IC By
(&
o}
0
I~
S ]
)
Qi: . Slope ~ —1/3
AL 5 ]
10 f[eIvi=10 NG /
-5-LVL =11 s
LVL=12 >~
— Exponential Fitting EC 1:,

0 2 4 6 :
t—t;

(b) 4 - ; — T
S LVL =10 i P
& LVL =11 ! P
LVL =12 - L

s ¥ B
3z 1) 1 P
N '8 P
1 i

= 2F wi=2/3 7 ]
Asymptotic p b ;o
i @y

ec A ]

Figure S1: Mesh convergence study using three levels-of-refinement LV L = 10, 11 and 12
(ATpminimum = 0.0051, 0.0026, and 0.0013) for the parameters shown in Table 1 (main text) for
the numerical simulations of a thinning filament during a Dripping-onto-Substrate (DoS) ex-
periment; results are presented through the temporal evolution of (a) the minimum filament
radius Ry, (t), and (b) the evolution in the dimensionless strain rate Wi(t) = é(t)7, in or-
der to evaluate the resolution of the Inertio-Capillary (IC), the subsequent Elasto-Capillary
(EC), and finally the Terminal Visco-Elasto-Capillary (TVEC) regimes. The Oldroyd-B
asymptotic thinning rate™(—1/3 slope) during the exponential thinning of the filament
(black solid line), and the theoretical predictions for the filament dynamics during the IC
regime (blue dashed line) are also shown in (a) and (b), respectively. Here, the dimensionless
time scale t has been shifted by an initial offset, ¢; which corresponds to the time at which
the residual effects of the initial spreading process become negligible. The time when the
local Wi attains its maximum value is denoted by t,4. — t; = 4.29 (with t,,,, = 11.75 and
; = 7.46); this also coincides with the end of the IC regime and the subsequent transition
to the EC regime.



We present in Figure [S1|the capability of Basilisk® to resolve the filament thinning dynamics
during a Dripping-onto-Substrate rheometry adequately, accounting for the wetting process
of the substrate. Specifically, we show in Figure [S1ja) and (b) the temporal profiles of the
dimensionless minimum radius of the viscoelastic filament R,,;,(t) and the local dimension-
less strain rate Wi(t) = é(t)7 respectively, with é(t) = —2dlog(Rin)/dt and 7 denotes the
relaxation time of the polymer, for the same physical properties listed in Table 1 (main text)
and for three different levels of refinement (LV L = 10, 11, and 12) which correspond to three
distinct minimum square cell sizes (Arpinimum = 0.0051, 0.0026, and 0.0013). In addition, in
the current work, we treat the lateral spreading of the fluid over the solid substrate by setting
the macroscopic equilibrium contact angle as a boundary condition on the solid boundary
in combination with the height-function method™. Although we enforce a no-slip condition
on the substrate, the velocity field for the interface advection is located at the centre of
the cell faces and therefore Basilisk™ allows for an implicit slip condition at the contact line
singularity with slip length of A7, imimum/2 4. Hence, these three values of the refinement
level (or the minimum cell sizes) also determine the resulting slip lengths at the contact line
that can be resolved here (which at LV L = 12 are up to 4 orders of magnitude lower than
the initial filament radius Ry).

In Figure [S1| we observe that even though the profiles of R,,;,(t) and Wi(t) at LVL = 10
are seen to fluctuate more compared to LV L = 11 and 12, all the LV L values exhibit identical
Inertio-Capillary (IC) dynamics, and converge to the Oldroyd-B asymptotic of —1/(3De)™
(or equivalently Wi = 2/3) during the Elasto-Capillary (EC) regime. Moreover, at the high-
est level of refinement LV L = 12 (i.e. the lowest Aryinimum = 0.0013), we do not observe
any substantial difference during the exponential EC thinning of the filament. Mesh resolu-
tion limitations only become apparent in the terminal linear visco-elasto-capillary (TVEC)
thinning at ¢t — ¢; > 7234 which is beyond the scope of the current work. Therefore, at
LV L =11 (AT pinimum = 0.0026) we can sufficiently resolve both the initial inertio-capillary

thinning and the subsequent onset and evolution of the EC regime, which are the main focus



of this work. Finally, we also see that the macroscopic filament dynamics remain essentially
unaffected by the magnitude of the slip length (~ 1073 Ry for LV L = 11 and ~ 107*Ry for

LV L = 12) at the contact line singularity.

Fitting results with the Anna-McKinley model and the

FENE-P analytical solution
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Figure S2: Simulation data of the dimensionless minimum filament radius ¢ during the EC
regime denoted by diamond symbols for a polymer finite extensibility Lfnput = 400, fixed
Deborah number De;,,,e = 7/tg = 1, and elasto-capillary number Ec;pp = n,Ro/(77) =
0.03. Here, the time ¢ is shifted by ¢; which corresponds to the onset of the EC regime. The
predictions of the Anna-McKinley fitting model (Eq. (18) in the main text) and the FENE-P
analytical solution (Eq.(19) in the main text) for L? , = 400 are shown by solid orange
and dashed red lines, respectively. The dashed black line corresponds to the prediction of

exponential Oldroyd-B decay during the EC regime®!2-0,

In Figure |S2| we show the results obtained from fitting Eq. (18) labelled “Anna-Mckinley
Fitting” (solid orange line) and Eq. (19) labelled “FENE-P Fitting” (dashed red line) to the
data (blue diamonds) generated with the numerical simulations presented in this work for
the evolution of the scaled filament radius & = Ry, (t)/ Ry with time ¢t —¢;, where Ry and t;

are the dimensionless filament radius and time at the onset of the EC regime, respectively.
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The properties considered here are the same as in Table 1 (main text) but with the smallest
finite extensibility of the polymer (L? = 400). We observe a significant deviation of the
simulation and the predictions of the two fitting equations from the Oldroyd-B asymptotic
result (dashed black line) during the EC regime. We also see that both Eq. (18) and
(19) overlap very well with the simulation data qualitatively. However, Table 6 and Figure
12 (main text) reveal important quantitative differences that should be carefully considered
when we aim to extract the apparent relaxation time of dilute polymer solutions with limited
extensibility.

Here, we also examine the influence that the Bond number, the subsrtate wettability and
the Deborah number can exert on the fitting results. We first show in Figure S3|the evolution
of the dimensionless radius and the dimensionless strain rate in the viscoelastic filament for
a finite Bond number (Bo = 1), a larger macroscopic contact angle (0g = 60°) and a higher
Deborah number (De = 5) than the main case presented in the main text while remaining
at the smallest polymer finite extensibility (L? = 400). We also show a case for De = 5 but
for the second smallest finite extensibility value (L? = 900). Hence, we focus on the finite
chain extensibility values for which the largest deviations are seen, as presented thoroughly
in Figure 4 and Table 6 in the main text. When we vary the Bond number or the macroscopic
contact angle g, we do not observe a strong effect on the resulting thinning-rate, while a
larger polymer finite extensibility for the same Deborah number still deviates (but less so)
from the Oldroyd-B asymptotic (Wi = 2/3). All these observations are consistent with the

key results presented in the main text.
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Figure S3: (a) Temporal profiles of the dimensionless minimum filament radius R,,;,(t) and
the local dimensionless strain rate Wi(t) = 7é(t) for two Deborah numbers (De = 1 and 5),
two Bond numbers (Bo = 0 and 1), two contact angles (0 = 30° and 60°), and polymer
finite extensibility L? = 400 (and L=900 for De = 5 denoted by purple diamond symbols).
The rest of the parameters remain unchanged from Table 1 in the main text.
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Figure S4: Estimated values of Dey; from Table S| for (a) L,,,, = {400,900, 1600, 2500}

and De;jypye = 1 (the results for a finite Bond number value and for a smaller substrate
wettability are denoted by magenta and dark red colors, respectively), and (b) for L? = 400
and 900 and De;y,,e = 5 using the “Oldroyd-B” (blue circles) , the “Anna-McKinley” (red
squares) and the “FENE-P” (green diamonds) fitting approaches. The dashed black lines
show the ground-truth values of De;,p = 1 and Dejy,pe = 5, respectively.

In addition, we provide in Table[S1|the fitting results employing the Oldroyd-B (Rypnin(t) ~
exp(—3t/De)), Anna-McKinley (Eq. (18) in the main text) and FENE-P (Eq. (19) in the
main text) fitting models for the cases shown in Figure We also show in Figure

the predicted value of the dimensionless relaxation time of the polymer for the additional



cases and those presented already in the main text as it results from these methods. We
observe that for the lowest finite extensibility of the polymer, the significant deviation from
the input value Dejyp, persists in all the cases independently of the magnitude of the Bond
number, the substrate wettability and the Deborah number. We also see that the FENE-P
fitting approach presents the smallest error compared with the Oldroyd-B prediction and
the Anna-McKinley model, consistent with what is concluded in the main text.

More specifically, we observe that with a finite Bond number (Bo = 1) the Oldroyd-B and
the FENE-P error decreases, while theerror incurred from using the Anna-McKinley model
increases. Additionally, the fitting predictions slightly worsen for all the methods with a
smaller substrate wettability (larger equilibrium contact angle). Finally, when we increase
the Deborah number (De = 5), we see that at the smallest value of the polymer finite
extensibility (L? = 400) the Anna-McKinley and the FENE-P analytical solution achieve
similar levels of fidelity (while the Oldroyd-B is still the worst). However, the FENE-P
fitting model seems more suitable when we move to a larger finite extensibility (L? = 900),
as it incurs a fitting error of only around 3%. These observations allow us to conclude that
with the use of the FENE-P analytical solution (Eq. (19) in the main text) we can improve
(up to an extent) determination of the relaxation time of polymeric samples with very small

finite extensibility values.
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Analysis of the predictions of the FENE-P analytical

solution
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Figure S5: Minimum Mean Squared Error (min(log;, M SE)) in blue and the combinations
of the elasto-capillary number and polymer finite extensibility (Fcpes X L2,,). The values
correspond to the minimum Mean Squared Error from the predictions of the FENE-P an-
alytical solution for filament thinning during the EC regime for different values of polymer
extensibility (L2 ,,). The known input and the predicted values of the products (Eces X L2 ;)
are denoted by a yellow circle and triangle symbol, respectively. The black arrows point to
the minimum Mean Squared Error, min(log, MSE) ~ —3.7 and min(log,, MSE) ~ —4, of
the known and predicted values (Ecpq X L%,,), respectively.

We present in Figure the variation in the minimum Mean Squared Error (MSE), and
the product (Ecis X L2,,) of the different combinations of elasto-capillary numbers (which
correspond to the dimensionless elastic modulus, Fc = GRy/7) and polymer extensibilities
that result in the minimum MSE (min(log,, M.SE)). The error evolves continuously with
the value of finite extensibilities L2,., (10? < L2, < 10*) considered in Figure 14 (main text).
The product Ecies x L2, = 75 of the known (ground-truth) values (Ec.s = 0.03, L2, =
2500) is denoted by a yellow circle symbol in Figure , and results in a minimum MSE of
min(log,g MSE) ~ —3.7. These are the elasto-capillary number (Ecis = 0.03) and finite
extensibility value (L%, = 2500) that we expect from the predictions of Eq. (19) (main

text). However, the optimiser of the fitting process using Eq. (19) detects a different value
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of the minimum MSE. This value is min(log,, M SE) ~ —4 and corresponds to the product
Ecieq x L2, ~ 67.1 (Eciss = 0.58, L%, = 115.7) denoted by a yellow triangle symbol
in Figure Nonetheless, this systematic error in the prediction of the elasto-capillary
number and polymer chain extensibility does not substantially affect the determination of
the relaxation time of the polymer using the FENE-P analytical solution (Eq. (19) in the

main text).
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