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Summary

In the supporting materials, we provide important details on the grid cell resolution of

the numerical simulations of a Dripping-onto-Substrate (DoS) experiment1–3 and the fitting

methods implemented for the determination of the relaxation time of a polymer using DoS

rheometry. In the first section, we present the mesh convergence study for evaluating the

accuracy of the numerical simulations using the code Basilisk 4 to describe the thinning

dynamics of a viscoelastic filament in a DoS experiment. In the second section, we provide

a qualitative comparison between the predictions of the “Anna-McKinley” empirical model5

and the FENE-P analytical solution6 in order to determine the apparent relaxation time of a

dilute polymer solution and we also capture the effect of the Bond number, the macroscopic

contact angle and the Deborah number on the fitting results. In the last section, we focus

on the predictions of the FENE-P analytical solution and we carefully inspect the fitting

results for the elastic modulus and the polymer chain extensibility.
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Mesh Convergence Study

Figure S1: Mesh convergence study using three levels-of-refinement LV L = 10, 11 and 12
(∆rminimum = 0.0051, 0.0026, and 0.0013) for the parameters shown in Table 1 (main text) for
the numerical simulations of a thinning filament during a Dripping-onto-Substrate (DoS) ex-
periment; results are presented through the temporal evolution of (a) the minimum filament
radius Rmin(t), and (b) the evolution in the dimensionless strain rate Wi(t) = ϵ̇(t)τ , in or-
der to evaluate the resolution of the Inertio-Capillary (IC), the subsequent Elasto-Capillary
(EC), and finally the Terminal Visco-Elasto-Capillary (TVEC) regimes. The Oldroyd-B
asymptotic thinning rate7–10(−1/3 slope) during the exponential thinning of the filament
(black solid line), and the theoretical predictions for the filament dynamics during the IC
regime (blue dashed line) are also shown in (a) and (b), respectively. Here, the dimensionless
time scale t has been shifted by an initial offset, ti which corresponds to the time at which
the residual effects of the initial spreading process become negligible. The time when the
local Wi attains its maximum value is denoted by tmax − ti = 4.29 (with tmax = 11.75 and
ti = 7.46); this also coincides with the end of the IC regime and the subsequent transition
to the EC regime.
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We present in Figure S1 the capability of Basilisk 4 to resolve the filament thinning dynamics

during a Dripping-onto-Substrate rheometry adequately, accounting for the wetting process

of the substrate. Specifically, we show in Figure S1(a) and (b) the temporal profiles of the

dimensionless minimum radius of the viscoelastic filament Rmin(t) and the local dimension-

less strain rate Wi(t) = ϵ̇(t)τ respectively, with ϵ̇(t) = −2d log(Rmin)/dt and τ denotes the

relaxation time of the polymer, for the same physical properties listed in Table 1 (main text)

and for three different levels of refinement (LV L = 10, 11, and 12) which correspond to three

distinct minimum square cell sizes (∆rminimum = 0.0051, 0.0026, and 0.0013). In addition, in

the current work, we treat the lateral spreading of the fluid over the solid substrate by setting

the macroscopic equilibrium contact angle as a boundary condition on the solid boundary

in combination with the height-function method11. Although we enforce a no-slip condition

on the substrate, the velocity field for the interface advection is located at the centre of

the cell faces and therefore Basilisk 4 allows for an implicit slip condition at the contact line

singularity with slip length of ∆rminimum/2
11,12. Hence, these three values of the refinement

level (or the minimum cell sizes) also determine the resulting slip lengths at the contact line

that can be resolved here (which at LV L = 12 are up to 4 orders of magnitude lower than

the initial filament radius R0).

In Figure S1 we observe that even though the profiles of Rmin(t) and Wi(t) at LV L = 10

are seen to fluctuate more compared to LV L = 11 and 12, all the LV L values exhibit identical

Inertio-Capillary (IC) dynamics, and converge to the Oldroyd-B asymptotic of −1/(3De)7–10

(or equivalently Wi = 2/3) during the Elasto-Capillary (EC) regime. Moreover, at the high-

est level of refinement LV L = 12 (i.e. the lowest ∆rminimum = 0.0013), we do not observe

any substantial difference during the exponential EC thinning of the filament. Mesh resolu-

tion limitations only become apparent in the terminal linear visco-elasto-capillary (TVEC)

thinning at t − ti ≥ 79,13,14, which is beyond the scope of the current work. Therefore, at

LV L = 11 (∆rminimum = 0.0026) we can sufficiently resolve both the initial inertio-capillary

thinning and the subsequent onset and evolution of the EC regime, which are the main focus
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of this work. Finally, we also see that the macroscopic filament dynamics remain essentially

unaffected by the magnitude of the slip length (∼ 10−3R0 for LV L = 11 and ∼ 10−4R0 for

LV L = 12) at the contact line singularity.

Fitting results with the Anna-McKinley model and the

FENE-P analytical solution

Figure S2: Simulation data of the dimensionless minimum filament radius ξ during the EC
regime denoted by diamond symbols for a polymer finite extensibility L2

input = 400, fixed
Deborah number Deinput = τ/tR = 1, and elasto-capillary number Ecinput = ηpR0/(τγ) =
0.03. Here, the time t is shifted by t1 which corresponds to the onset of the EC regime. The
predictions of the Anna-McKinley fitting model (Eq. (18) in the main text) and the FENE-P
analytical solution (Eq.(19) in the main text) for L2

input = 400 are shown by solid orange
and dashed red lines, respectively. The dashed black line corresponds to the prediction of
exponential Oldroyd-B decay during the EC regime9,15,16.

In Figure S2 we show the results obtained from fitting Eq. (18) labelled “Anna-Mckinley

Fitting” (solid orange line) and Eq. (19) labelled “FENE-P Fitting” (dashed red line) to the

data (blue diamonds) generated with the numerical simulations presented in this work for

the evolution of the scaled filament radius ξ = Rmin(t)/R1 with time t− t1, where R1 and t1

are the dimensionless filament radius and time at the onset of the EC regime, respectively.
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The properties considered here are the same as in Table 1 (main text) but with the smallest

finite extensibility of the polymer (L2 = 400). We observe a significant deviation of the

simulation and the predictions of the two fitting equations from the Oldroyd-B asymptotic

result (dashed black line) during the EC regime. We also see that both Eq. (18) and

(19) overlap very well with the simulation data qualitatively. However, Table 6 and Figure

12 (main text) reveal important quantitative differences that should be carefully considered

when we aim to extract the apparent relaxation time of dilute polymer solutions with limited

extensibility.

Here, we also examine the influence that the Bond number, the subsrtate wettability and

the Deborah number can exert on the fitting results. We first show in Figure S3 the evolution

of the dimensionless radius and the dimensionless strain rate in the viscoelastic filament for

a finite Bond number (Bo = 1), a larger macroscopic contact angle (θE = 60◦) and a higher

Deborah number (De = 5) than the main case presented in the main text while remaining

at the smallest polymer finite extensibility (L2 = 400). We also show a case for De = 5 but

for the second smallest finite extensibility value (L2 = 900). Hence, we focus on the finite

chain extensibility values for which the largest deviations are seen, as presented thoroughly

in Figure 4 and Table 6 in the main text. When we vary the Bond number or the macroscopic

contact angle θE, we do not observe a strong effect on the resulting thinning-rate, while a

larger polymer finite extensibility for the same Deborah number still deviates (but less so)

from the Oldroyd-B asymptotic (Wi = 2/3). All these observations are consistent with the

key results presented in the main text.
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Figure S3: (a) Temporal profiles of the dimensionless minimum filament radius Rmin(t) and
the local dimensionless strain rate Wi(t) = τ ϵ̇(t) for two Deborah numbers (De = 1 and 5),
two Bond numbers (Bo = 0 and 1), two contact angles (θE = 30◦ and 60◦), and polymer
finite extensibility L2 = 400 (and L=900 for De = 5 denoted by purple diamond symbols).
The rest of the parameters remain unchanged from Table 1 in the main text.
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Figure S4: Estimated values of Defit from Table S1 for (a) L2
input = {400, 900, 1600, 2500}

and Deinput = 1 (the results for a finite Bond number value and for a smaller substrate
wettability are denoted by magenta and dark red colors, respectively), and (b) for L2 = 400
and 900 and Deinput = 5 using the “Oldroyd-B” (blue circles) , the “Anna-McKinley” (red
squares) and the “FENE-P” (green diamonds) fitting approaches. The dashed black lines
show the ground-truth values of Deinput = 1 and Deinput = 5, respectively.

In addition, we provide in Table S1 the fitting results employing the Oldroyd-B (Rmin(t) ∼

exp(−3t/De)), Anna-McKinley (Eq. (18) in the main text) and FENE-P (Eq. (19) in the

main text) fitting models for the cases shown in Figure S3. We also show in Figure S4

the predicted value of the dimensionless relaxation time of the polymer for the additional
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cases and those presented already in the main text as it results from these methods. We

observe that for the lowest finite extensibility of the polymer, the significant deviation from

the input value Deinput persists in all the cases independently of the magnitude of the Bond

number, the substrate wettability and the Deborah number. We also see that the FENE-P

fitting approach presents the smallest error compared with the Oldroyd-B prediction and

the Anna-McKinley model, consistent with what is concluded in the main text.

More specifically, we observe that with a finite Bond number (Bo = 1) the Oldroyd-B and

the FENE-P error decreases, while theerror incurred from using the Anna-McKinley model

increases. Additionally, the fitting predictions slightly worsen for all the methods with a

smaller substrate wettability (larger equilibrium contact angle). Finally, when we increase

the Deborah number (De = 5), we see that at the smallest value of the polymer finite

extensibility (L2 = 400) the Anna-McKinley and the FENE-P analytical solution achieve

similar levels of fidelity (while the Oldroyd-B is still the worst). However, the FENE-P

fitting model seems more suitable when we move to a larger finite extensibility (L2 = 900),

as it incurs a fitting error of only around 3%. These observations allow us to conclude that

with the use of the FENE-P analytical solution (Eq. (19) in the main text) we can improve

(up to an extent) determination of the relaxation time of polymeric samples with very small

finite extensibility values.
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Analysis of the predictions of the FENE-P analytical

solution

Figure S5: Minimum Mean Squared Error (min(log10MSE)) in blue and the combinations
of the elasto-capillary number and polymer finite extensibility (Ectest × L2

test). The values
correspond to the minimum Mean Squared Error from the predictions of the FENE-P an-
alytical solution for filament thinning during the EC regime for different values of polymer
extensibility (L2

test). The known input and the predicted values of the products (Ectest×L2
test)

are denoted by a yellow circle and triangle symbol, respectively. The black arrows point to
the minimum Mean Squared Error, min(log10MSE) ≈ −3.7 and min(log10MSE) ≈ −4, of
the known and predicted values (Ectest × L2

test), respectively.

We present in Figure S5 the variation in the minimum Mean Squared Error (MSE), and

the product (Ectest × L2
test) of the different combinations of elasto-capillary numbers (which

correspond to the dimensionless elastic modulus, Ec = GR0/γ) and polymer extensibilities

that result in the minimum MSE (min(log10MSE)). The error evolves continuously with

the value of finite extensibilities L2
test (10

2 ≤ L2
test ≤ 104) considered in Figure 14 (main text).

The product Ectest × L2
test = 75 of the known (ground-truth) values (Ectest = 0.03, L2

test =

2500) is denoted by a yellow circle symbol in Figure S5, and results in a minimum MSE of

min(log10MSE) ≈ −3.7. These are the elasto-capillary number (Ectest = 0.03) and finite

extensibility value (L2
test = 2500) that we expect from the predictions of Eq. (19) (main

text). However, the optimiser of the fitting process using Eq. (19) detects a different value
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of the minimum MSE. This value is min(log10MSE) ≈ −4 and corresponds to the product

Ectest × L2
test ≈ 67.1 (Ectest = 0.58, L2

test = 115.7) denoted by a yellow triangle symbol

in Figure S5. Nonetheless, this systematic error in the prediction of the elasto-capillary

number and polymer chain extensibility does not substantially affect the determination of

the relaxation time of the polymer using the FENE-P analytical solution (Eq. (19) in the

main text).
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