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Polymer Graph Convolutional Network architecture 

In Figure 2 of main text, we depict the conversion process of a single bottlebrush 

copolymer into a feature matrix and an adjacency matrix. The nodes in the graph are 

represented by the beads obtained from the DPD simulation, while edges correspond to the 

bonds between these beads. The feature matrix encapsulates polymer information, including 

bead type and repulsion parameters. Specifically, the top three components of the feature matrix 

denote the bead types (eq S1). The subsequent components are allocated to represent repulsion 

parameters, ranging from 25 to 35 with an increment of 1 (eq S2). 

𝑣𝑡𝑦𝑝𝑒 𝐴 ∶ (1 0 0),  𝑣𝑡𝑦𝑝𝑒 𝐵 ∶ (0 1 0),  𝑣𝑡𝑦𝑒𝑝 𝐶 ∶ (0 0 1)            (eq S1) 

𝑟𝑒𝑝𝑢𝑙𝑠𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑎𝑖𝑗) = 26 ∶ (0 1 0 0 0 0 0 0 0 0 0 0 0 0)    (eq S2) 

To organize the bead information systematically, numerical assignments are allocated 

to individual beads. In Figure S1, which serves as a simplified depiction of the bottlebrush 

copolymer, numerical labels are initially assigned to beads along the backbone chain. 

Subsequently, beads along the side chain are numbered sequentially form left to right.  

Adjacency matrix contains bonding information between beads in the graph 

representation. In the adjacency matrix (A), if nodes 𝑖 and 𝑗 are connected, the corresponding 

component 𝐴𝑖𝑗 is assigned a value of 1. To preserve the individual information of each node, 

the diagonal elements of the adjacency matrix are set to 1, as depicted by the red elements in 

Figure 2 in main text. To match the feature matrix and the adjacency matrix, the matrix size is 

established based on the maximum value of short side chain length (𝑁𝑠𝑠). As a result, feature 

matrix size is fixed at 108 × 14 (108: The maximum number of beads of single bottlebrush 



copolymer, 14: bead type and repulsion parameter information) and adjacency matrix size is 

fixed at 108 × 108. 

 

Figure S1. Numbering of beads for stacking feature vector 

 

 

 

 

 

 

 

 

 

 

 



We provide a detailed process illustration for predicting single chain properties by 

using GCN method as shown in Figure S2. Initially, the resultant matrix, obtained by 

multiplying the feature matrix (𝐹)  and adjacency matrix (𝐴) , forms a distinctive 

representation of unique matrix sized 108 × 14  which encapsulates the architectural and 

repulsion parameter values inherent to the polymer (Figure S2a). Next, the unique matrix 

undergoes convolutional updates through weight and bias vectors. A weight matrix sized 

14 × 64 and bias matrix sized 108 × 64 are employed to embed the unique matrix, resulting 

in a transformed embedded matrix 𝐻0 sized 108 × 64 (Figure S2b). Then, embedded matrix 

𝐻0 is multiplied by the adjacency matrix to update information among connected nodes, and 

this is multiplied by weight matrix and bias matrix is added as described in the equation 𝐻𝑖+1 =

 𝜎(𝐴𝐻𝑖𝑊𝑖 + 𝑏𝑖). In this procedure, the graph is iteratively updated using weight matrix sized 

64 × 64  and bias vectors sized 108 × 64, along with the adjacency matrix, as it passes 

through 5 hidden layers (Figure S2c). After convolution, a simple pooling is applied by 

summing along the columns, resulting in a transformed 1x64 matrix. Lastly, the matrix is 

converted to the target single chain physical property through linear regression using a 64x1 

weight and bias vectors (Figure S2d). 

 

 

  



 

Figure S2. (a) Process of making the unique matrix for bottle brush copolymer. (b) Process of 

embedding unique polymer matrix. (c) Process of updating hidden layers. (d) Process of 

pooling and regression to predict the physical property (output).  



 

Figure S3. The normalized heatmap represents the convex hull volume of short side chain (𝑉𝐴) 

of (a) short side chain length 3, (b) short side chain length 4, and (c) short side chain length 5. 

The normalized heatmap represents the asphericity of short side chain (𝑒𝐴) of (d) short side 

chain length 3, (e) short side chain length 4, and (f) short side chain length 5. The normalized 

heatmap represents the interaction energy between short side chain-long side chain (𝐸𝐴𝐵) of 

(g) short side chain length 3, (h) short side chain length 4, and (i) short side chain length 5. The 

sequence is fixed at [001100110011]. 

 

 



 

Figure S4. The normalized heatmap represents the interaction energy between short and long 

side chains (𝐸𝐴𝐵) of a single bottlebrush copolymer of short side chain length 4 with different 

sequences. (a) [000000111111]. (b) [000111000111]. (c) [001100110011]. (d) 

[010101010101]. (e) [000111111000]. (f) [111000000111]. 

 



 

Figure S5. Predictive performance of 7 single chain physical properties; (a) Asphericity of all 

chain beads, (b) asphericity of short side chain (bead type A), (c) asphericity of long side chain 

(bead type B), (d) convex hull volume of all chain beads, (e) convex hull volume of short side 

chain (bead type A), (f) convex hull volume of long side chain (bead type B), and (g) radius of 

gyration of backbone chain (bead type C). 

 

 

 

 



 

Figure S6. (a) The accuracy of classification with randomly chosen 7 input features. (b) The 

input feature importance for classification process. The color of each bar in the graph 

corresponds to the extent of its influence on specific self-assembled structure, matched by 

color, with longer bars indicating a greater impact on the classification process. (c) The feature 

importance for the formation of vesicle morphology. In the graph, red points indicate high 

values of physical properties, while blue points indicate low values, aiding in the classification 

process. If the value on the x-axis is positive, it signifies a high probability of predicting the 

formation of vesicles, whereas a negative value indicates a low probability of such prediction. 

 

 

 

 

 

 



 

Figure S7. The morphology classification accuracy of validation set using GCN graphs as 

input features. 

 

 

 

 

 



 

Figure S8. The phase diagram of bottlebrush copolymers with short side chain length 4 with 

different chain sequences from DPD simulation; (a) [000000111111], (b) [000111000111], (c) 

[001100110011], (d) [0101010101010], (e) [000111111000], and (f) [111000000111]. 

 

 

 

 

 



 

Figure S9. The upper phase diagrams (a-c) depict results observed through DPD simulation, 

with (a) short side chain length 3, (b) short side chain length 4, and (c) short side chain length 

5 for the sequence [010100011101]. The lower phase diagrams (d-f) represent classification 

predictions using the predicted 7 physical properties as input data, with (d) short side chain 

length 3, (e) short side chain length 4, and (f) short side chain length 5 for the sequence 

[010100011101]. 

 


