ELECTRONIC SUPPLEMENTARY INFORMATION

Theory and Simulations of Light-Induced Self-Assembly in Colloids with Quantum Chemistry Derived Empirical Potentials

Remya Ann Mathews Kalapurakala, Prateek K. Jhae,* and Harish Vashistha,b,c,d,*

aDepartment of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH 03824, USA
bDepartment of Chemistry, University of New Hampshire, Durham, NH 03824, USA
cIntegrated Applied Mathematics Program, University of New Hampshire, Durham, NH 03824, USA
dMolecular and Cellular Biotechnology Program, University of New Hampshire, Durham, NH 03824, USA
eDepartment of Chemical Engineering, Indian Institute of Technology, Roorkee 247667, India

E-mail*: harish.vashisth@unh.edu; prateek.jha@ch.iitr.ac.in

Supplementary Information (SI) for Soft Matter. This journal is © The Royal Society of Chemistry 2024
SUPPORTING METHODS

Discrete and Analytical Derivations for $\mathcal{U}(r_{12}) = 1$

Discrete Method

The effective interaction between two ligand-coated NPs is given by the summation of the interaction energy between all ligand-ligand pairs on the interacting hemispheres in vicinity (see Figure 4A and Equation 1). We substitute $\mathcal{U}(r_{12}) = 1$ to obtain:

$$U(d) = \sum_{i=1}^{N_{lig}} \sum_{j=1}^{N_{lig}} \mathcal{U}(r_{12}) = \sum_{i=1}^{N_{lig}} \sum_{j=1}^{N_{lig}} 1 = \frac{N_{lig}^2}{4} = \frac{20 \times 20}{4} \quad \text{(for $N_{lig} = 20$)} = 100 \quad \text{(S1)}$$

Analytical Method

The effective interaction between two ligand-coated NPs is given by integrating over the interacting hemispheres in vicinity (see Figure 4C and and Equation 4). Substituting $\mathcal{U}(r_{12}) = 1$ in Equation 4, we get:

$$U(d) = \rho^2 \int_{S_1} \int_{S_2} \mathcal{U}(r_{12}) dS_1 dS_2$$

$$= \rho^2 \int_{S_1} dS_1 \int_{S_2} dS_2 \mathcal{U}(r_{12})$$

$$= \rho^2 \left[R^2 \int_0^{2\pi} d\theta_1 \int_0^{\pi/2} sin\phi_1 d\phi_1 \right] \left[R^2 \int_0^{2\pi} d\theta_2 \int_0^{\pi/2} sin\phi_2 d\phi_2 \right] \mathcal{U}(r_{12})$$

$$= \frac{N_{lig}^2}{(4\pi R^2)^2} \left[R^2 \int_0^{2\pi} d\theta_1 \int_0^{\pi/2} sin\phi_1 d\phi_1 \right] \left[R^2 \int_0^{2\pi} d\theta_2 \int_0^{\pi/2} sin\phi_2 d\phi_2 \right] \left[\mathcal{U}(r_{12}) \right]$$

$$= \frac{N_{lig}^2}{(4\pi R^2)^2} \left[R^2 \left[\theta_1 \right]_0^{2\pi} \left[-cos\phi_1 \right]_0^{\pi/2} \right] \left[R^2 \left[\theta_2 \right]_0^{2\pi} \left[-cos\phi_2 \right]_0^{\pi/2} \right] \left[\mathcal{U}(r_{12}) \right]$$

$$= \frac{N_{lig}^2}{16\pi^2 R^4} \left[R^2 \times 2\pi \times 1 \right] \left[R^2 \times 2\pi \times 1 \right] \left[\mathcal{U}(r_{12}) \right]$$

$$= \frac{N_{lig}^2}{4}$$

$$= \frac{20 \times 20}{4} \quad \text{(for $N_{lig} = 20$)}$$

$$= 100 \quad \text{(S2)}$$
Figure S1: Schematic representations of the possible conformations for trans-NPs. (A) At $d = 0$, the extended thiol chain shell (orange) overlaps with the DDA/DDAB shell (gray) of the other particle and hence this conformation is energetically not favorable. (B) At $d \geq L_{\text{lig}}/2$, the conformation is energetically feasible.
Figure S2: A schematic representation of (A) a trans-NP showing a flexible ADT ligand in comparison to fully extended ligands. (B) The traces of the effective interaction energy for a pair of trans-NPs at different values of the functional ligand length L_{lig}. At $L_{\text{lig}} = 20$, the interaction energy shows a negative value for certain values of d, and could be considered valid. At $L_{\text{lig}} = 25$, the interaction energy still shows a negative value for certain values of d, but its magnitude can be considered to be negligible.
Figure S3: Morphologies for *cis*-NP (pink) and *trans*-NP (blue) systems at various values of T^* and ρ^*. The snapshots enclosed in the orange box are shown in Figure 6.
Figure S4: Radial distribution functions. (A) $\rho^* = 1.25 \times 10^{-4}$, (B) $\rho^* = 1.00 \times 10^{-3}$, and (C) $\rho^* = 8.00 \times 10^{-3}$.
Figure S5: Average cluster size with respect to time steps. (A) $\rho^* = 1.25 \times 10^{-4}$ and (B) $\rho^* = 2.96 \times 10^{-4}$.

Figure S6: Distributions of the cluster size. (A) $\rho^* = 1.25 \times 10^{-4}$ and (B) $\rho^* = 2.96 \times 10^{-4}$.
Figure S7: Morphologies for cis-NP systems at various values of reduced density (ρ^*) obtained from simulated annealing simulations.