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Elastic energy as a function of strain on linear scales

Fig. S1. Elastic energy, U , as a function of strain, γ, for different volume fractions in a linear scale plot.
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Strain dependence of first and second normal stresses differences and osmotic pressure

Fig. S2. First normal stress difference, N1, (top row), second normal stress difference, −N2, (middle row),

and osmotic pressure, Π, (bottom row), as a function of strain, γ, for suspensions with volume fraction of

ϕ = 0.70, 0.80, and 0.90.
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Fit parameters for SE − γ̇ curves

TABLE I. Parameters determined from fitting SE − γ̇ curves to −SE = a− b ln(γ̇ + c) at different volume

fractions.

Volume fraction (ϕ) a b c

0.70 2.140± 0.087 0.495± 0.009 4.24× 10−8 ± 1.16× 10−8

0.75 2.106± 0.169 0.560± 0.020 8.00× 10−7 ± 2.45× 10−7

0.80 2.415± 0.172 0.568± 0.022 1.64× 10−6 ± 4.57× 10−7

0.85 2.542± 0.168 0.589± 0.022 4.70× 10−6 ± 1.10× 10−6

0.90 3.011± 0.244 0.558± 0.031 9.96× 10−6 ± 2.66× 10−6

Flow curve with Herschel Bulkley fit

Fig. S3. Master curves of the dimensionless shear stress. The solid line is the Herschel-Bulkley (HB) equation

according to σ/σy = 1 + 789.28ˆ̇γ0.51±0.02.
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Two-dimensional pair distribution function

Fig. S4. Two-dimensional pair distribution function, g(r, θ), at shear rate of (A-C) ˜̇γ = 10−9 and (D-F)

˜̇γ = 10−4 for ϕ = 0.80 at different strains:(A, D) γ = 0, (B, E) γ = γp, and (C, F) γ = γst.
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Expansion of pair distribution function based on spherical harmonics

The pair distribution function g(r) is expanded using spherical harmonics series, Ylm(n) [1, 2], as:

g(r) = gs(r) +
∞∑
l=1

l∑
m=−l

glm(r)Ylm(θ, ϕ), (1)

in which the expansion coefficients are glm(r) and are determined as glm(r) =
∫
g(r)Ylm(n)dn∫
YlmYlm(n)dn

, where

n is the outward unit normal to a spherical surface and thus dn = sinϕdϕdθ is the solid angle

element on the sphere (see Fig. S5 for the definition of θ and ϕ). The spherical harmonics are

given by:

Ylm(θ, ϕ) =

√
(2l + 1)

4π

(l −m)!

(l +m)!
Plm(cos θ)eimϕ, (2)

where Plm(cos θ) is the associated Legendre function. It is more convenient to work with the real

representation of the spherical harmonic function defined as:

Sl,|m|(θ, ϕ) =
√
2Re[Yl|m|(θ, ϕ)], (3)

Sl,−|m|(θ, ϕ) =
√
2 Im[Yl|m|(θ, ϕ)]. (4)

These functions constitute an orthonormal basis set. Then the equation for g(r) can be rewritten

as:

g(r) = gs(r) +
∞∑
l=1

l∑
m=−l

glm(r)Slm(θ, ϕ). (5)

The first few harmonics used are:
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S00 =
1

2
√
π
,

S20 =

√
5

16π
(3 cos2 ϕ− 1),

S22 =

√
15

16π
cos 2θ sin2 ϕ,

S2,−2 =

√
15

16π
sin 2θ sin2 ϕ,

S40 =
3

16
√
π
(35 cos4 ϕ− 30 cos2 ϕ+ 3),

S42 =
3

8

√
5

π
cos 2θ(7 cos2 ϕ− 1),

S4,−2 =
3

8

√
5

π
sin 2θ(7 cos2 ϕ− 1),

S44 =
3

16

√
35

π
cos 4θ sin2 ϕ,

S4,−4 =
3

16

√
35

π
sin 4θ sin2 ϕ.

These coefficients are shown at different stages of the startup flow at high (Fig. S6) and low (Fig.

S7) shear rates for suspensions with a volume fraction of ϕ = 0.80.

Fig. S5. Definitions of θ and ϕ angles in shear flow. θ is measured clockwise from the positive x-axis, while ϕ

is measured from the z-axis. The velocity profile of the imposed shear flow is given as u = (γ̇y, 0, 0), where

γ̇ is the shear rate.
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Fig. S6. Expansion of g(r) based on spherical harmonics coefficients at (A and D) equilibrium, (B and

E) peak stress, and (C and F) steady state (D-F shows the spherically symmetric contribution, gs(r)) for

suspensions with volume fraction of ϕ = 0.80 at shear rate of ˜̇γ = 10−4.
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Fig. S7. Expansion of g(r) based on spherical harmonics coefficients at (A and D) equilibrium, (B and

E) peak stress, and (C and F) steady state (D-F shows the spherically symmetric contribution, gs(r)) for

suspensions with volume fraction of ϕ = 0.80 at shear rate of ˜̇γ = 10−9.

Derivative of excess entropy as a function of strain

Fig. S8. Derivative of excess entropy with respect to strain,

(
∂SE

∂γ

)
V

, as a function of strain, γ, at different

shear rates for suspensions with volume fraction of (A) ϕ = 0.70, (B) ϕ = 0.80, and (C) ϕ = 0.90. The

color-coding in all sub-figures is the same as (A).
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Correlation of excess entropy with first and second normal stresses as well as osmotic pressure

Fig. S9. Excess entropy, −SE , as a function of first normal stress, N1, (top row), second normal stress, −N2,

(middle row), and osmotic pressure, Π, (bottom row) for different volume fractions.
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