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S1 Linear Viscoelasticity
A viscoelastic material has both elasticity (the elastic constant,
also called Young’s modulus, is written as E, with units of Pa) and
viscosity (dynamic viscosity, written as η , with units of Pa s)1–3.
If E and η are constants, not functions, the material exhibits lin-
ear viscoelasticity1–3. A material can have multiple components,
each with a unique E, η , or both, and these components act to-
gether to dictate a material’s viscoelastic response1–3. Material
elasticity and viscosity dictate how a material responds to a stim-
ulus, and are often used to calculate the relation between stress
(force per unit area) and strain (the ratio of the difference in
material dimensions during and before stimulus over material di-
mensions before stimulus) when a mechanical stimulus is applied
to the material1–3.

Mathematical models of viscoelasticity are often presented as
equivalent circuit models, which represent the elastic components
of a material’s response as springs, each with a unique E, and
viscous components as dampers, each with a unique η 1–3. The
standard linear solid (SLS) is the simplest model of linear vis-
coelasticity that fully describes both creep (changing strain under
constant stress) and relaxation (changing stress under constant
strain), both characteristic to viscoelastic materials1–3. The SLS
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Fig. S1 Equivalent circuit models of linear viscoelasticity. Elastic com-
ponents of the material are represented as springs with elastic modulus
E. Viscous components are represented as dampers with dynamic vis-
cosity η. Subscripts are used to indicate specific springs and dampers.
Panel (A) shows the standard linear solid (SLS), the simplest model of
linear viscoelasticity that fully describes both creep and relaxation. Panel
(B) shows the Kelvin-Voigt (KV) model, which is a special case of the
SLS where Er → ∞. Panel (C) shows the Maxwell (MW) model, which
is another special case of the SLS where Ec → 0. Panel (D) shows the
generalized SLS, known as the general Maxwell model (GMM), with can
be thought of as N SLSs connected in parallel.

consists of a spring and damper in series connected to a spring in
parallel, as shown in figure S1 (A)1–3.

Special cases of the SLS, where one of the elastic constants
dominates the material’s response, are known as the Maxwell
(MW, figure S1 (C), where Ec → 0) and Kelvin-Voigt (KV, figure
S1 (B), where Er → ∞) models1–4. The SLS can also be general-
ized by adding additional arms of springs and dampers in parallel
to the equivalent circuit, as diagrammed in figure S1 (D)1–4. This
generalized SLS is called the general Maxwell model (GMM) or
the Wiechert model1–3. Note that Ec of the generalized model is
actually a sum of Ec from individual SLSs. Therefore, the gen-
eral model can be thought of as several SLSs connected in par-
allel. The GMM is useful for representing complicated systems
with multiple constituents and multiple time responses that dic-
tate their mechanics1–9. Equivalent circuit models are used to
relate stress (σ(t), force per unit area) and strain (ε(t), change in
object dimensions / original dimensions), both functions of time
(t) in a material undergoing mechanical stimulus. Equations S1,
S2, S3, and S4 apply to the SLS, KV, MW, and GMM, respec-
tively10.

σ̇(t)+
Er

η
σ(t) = (Ec +Er) ε̇(t)+

EcEr

η
ε(t) (S1)

σ(t) = Ecε(t)+ηε̇(t) (S2)

ε̇(t) =
σ̇(t)
Er

+
σ(t)

η
(S3)

[
N

∏
j=1

(
E j +η j∂t

)]
σ(t) = Ec

[
N

∏
j=1

(
E j +η j∂t

)]
ε(t)

+

[
N

∑
i=1

(Eiηi∂t)
N

∏
j=1, j 6=i

(
E j +η j∂t

)]
ε(t)

(S4)

Dynamic experiments, where an oscillatory stimulus (ε(t) =

sin(ωt)) is applied to a sample, are common means of quantifying
sample viscoelasticity2,11. Dynamic experiments do not directly
measure the elastic and viscous constants of a sample, but instead
quantify the storage modulus (E ′, Pa), loss modulus (E ′′, Pa) and
loss tangent, tanδ = E ′′/E ′, of a sample2,11. The values of E ′, E ′′,
and tanδ depend on the frequency of the applied stimulus, and
are functions of the various E and η in the material2,4,11. The
exact relation depends on the equivalent circuit model that ap-
plies to the material, and is obtained by substituting ε(t) = sin(ωt)
into the differential equation describing the stress/strain relation-
ship of the model (equations S1, S2, S3, and S4 for the SLS, KV,
MW, and GMM, respectively), solving for σ(t), then separating
the components of σ(t) in phase (E ′) and out of phase (E ′′) with
the applied stimulus2,4,11. Relations between E ′, E ′′, and tanδ

as functions of E and η are detailed in supplementary table S1
for the MW, KV, SLS, and GMM2,4,11. E and η can be calculated
from experimental measurements of E ′, E ′′, and/or tanδ if the vis-
coelastic model (e.g. GMM, SLS, KV, or MW) that best describes
a sample is known4.
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Table S1 Relationship between viscoelastic material constants and dynamic measurement quantities. The four simplest models of linear viscoelasticity
are the General Maxwell Material (GMM), standard linear solid (SLS), Kelvin-Voigt (KV), and Maxwell (MW) models. The GMM consists of N SLSs,
and the MW and KV models are special cases of the SLS. Elastic (E) and viscous (η) constants within the material dictate the material’s response
to a dynamic stimulus at angular frequency ω, characterized by a sample’s storage modulus (E ′), loss modulus (E ′′), and loss tangent (tanδ = E ′′/E ′).
Note that the various E and η in the table below correspond to those in supplementary figure S1

Model E ′ (Pa) E ′′ (Pa) tanδ = E ′′/E ′

MW E ′ =
Erη2ω2

E2
r +η2ω2 E ′′ =

E2
r ηω

E2
r +η2ω2 tanδ =

Er

ηω

KV E ′ = Ec E ′′ = ηω tanδ =
ηω

Ec

SLS E ′ = Ec +
Erη2ω2

E2
r +η2ω2 E ′′ =

E2
r ηω

E2
r +η2ω2 tanδ =

E2
r ηω

(Ec +Er)η2ω2 +E2
r Ec

GMM E ′ = Ec +
N

∑
n=1

Enη2
n ω2

E2
n +η2

n ω2 E ′′ =
N

∑
n=1

E2
n ηnω

E2
n +η2

n ω2 tanδ =

N

∑
n=1

(
E2

n ηnω ∏
j 6=n

(
E2

j +η
2
j ω

2))

Ec

N

∏
n=1

(
E2

n +η
2
n ω

2)+ N

∑
n=1

(
Enη

2
n ω

2
∏
j 6=n

(
E2

j +η
2
j ω

2))

S2 Macroscale Dynamic Mechanical Analysis
(mDMA)

Dynamic mechanical analysis (DMA) is one of the standard tools
to quantify the macroscopic viscoelastic properties of a sam-
ple1,11–13. DMA apparatuses exist in a variety of geometries in or-
der to apply stimuli in different orientations relative to the surface
of a sample11–13. The mDMA experiments in this article used ax-
ial geometry, which applies a force normal (perpendicular) to the
sample’s surface11–14. Additionally, multiple operational modes
exist for mDMA apparatuses11–14. The mDMA experiments in
this article were performed in tension mode to measure the stor-
age (E ′) and loss (E ′′) modulus of a macroscale SBR sample13,14.
In tension mode DMA, a sample is clamped at both ends in the
apparatus, a sinusoidal force is applied to one end of the sample,
and the resulting sinusoidal force F and sinusoidal axial displace-
ment z of the sample are recorded1,12–14. These quantities can
then be converted to E ′ and E ′′, depending on the geometry of
the sample1,12–14. The following equations apply if the sample
is rectangular, which was the case for the SBR sample used in
the mDMA experiments provided for this article13,14. Here, H,
W , and L are the undeformed thickness, width, and length of the
sample, Fo is the amplitude of F , zo is the amplitude of z, and φ is
the phase angle between F and z1,12–14.

E ′ =
FoL

zoWH
cosφ (S5)

E ′′ =
FoL

zoWH
sinφ (S6)

Additional details on SBR mDMA can be found in the works of
Piacenti, 2021 and 202413,14.

S3 Nanoscale Dynamic Mechanical Analysis
(nDMA)

Photothermal AFM nano-dynamic mechanical analysis is a novel
AFM technique to perform nanoscale dynamic mechanical anal-
ysis (nDMA) by indenting a sample with chirped frequency os-
cillations via photothermal actuation of the AFM cantilever13,14.
This technique quantifies a sample’s storage modulus (E ′), loss
modulus (E ′′), and loss tangent (tanδ = E ′′/E ′) over a wide and
continuous range of frequencies13,14. For this nDMA technique,
the AFM tip indents a sample, then dwells on the sample for a
time interval D, then retracts. During the dwell, the sample is al-
lowed to fully relax13,14. After the sample relaxes, an oscillatory
signal of varying frequency, starting at frequency f0 and ending at
frequency f f , is applied to the sample13. This oscillation is called
a chirp signal, and obeys the following expression13,14. A loga-
rithmic chirp is used because a linear chirp causes artifacts at low
frequencies13–15.

f (t) = f0 sin

(
f0

(
f f

f0

)1/D
)

(S7)

For a directly actuated cantilever, the effective storage stiffness k′

and loss stiffness k′′ of the tip/sample interaction can be calcu-
lated for each frequency in the chirp by equating the sinusoidal
force acting on the cantilever (with amplitude Ar and phase φr)
when the tip is out of contact, with the force needed to deform
the sample (with amplitude A and phase φ)13,14,16.

k′ = kc

[
Ar

A
cos(φr−φ)−1

]
(S8)

k′′ = kc
Ar

A
sin(φr−φ) (S9)
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tanδ =
k′′

k′
(S10)

The geometric contributions to k′ and k′′ cancel when they are
divided by one another13,14. Therefore, tanδ measured by any
technique is independent of the contact geometry (geometry of
the tip/sample interaction)13,14. However, the same is not true
for k′ and k′′ 13,14. Therefore, storage and loss moduli of a sample
(E ′ and E ′′) must be obtained by applying a contact model to the
expressions for k′ and k′′ 13,14,17. Assuming that Etip � Esample,
the equation for E ′ and E ′′ of the sample are shown below for the
Hertz contact model13,14,17. Equations for other contact models
can be applied depending on the contact geometry between the
tip and sample, as previously described14.

E ′ =

(
1−ν2

S
2a1

)
k′ (S11)

E ′′ =

(
1−ν2

S
2a1

)
k′′ (S12)

Here, νS is the Poisson ratio of the sample, and a1 represents the
contact radius when the tip is in the sample, at the instant retrac-
tion begins13,14. It was assumed that νS = 0.5 for the SBR in this
article, because 0.5 is a typical νS for SBRs13,14,17–20.

S3.1 Limitations of photothermal nDMA

The limitations of photothermal nDMA are similar to those of
standard AFM indentation experiments13,14. Specifically, sam-
ple properties can be incorrectly calculated if the cantilever is
softer than the sample or comparable to |k′ + ik′′|.13,14. Addi-
tionally, the oscillations during the dwell must be smaller than
the indentation (so the tip doesn’t come off the sample during
the chirp), but larger than the noise floor13,14. For both these
reasons, as well as possibly probing the properties of the underly-
ing substrate, photothermal nDMA is difficult to perform on thin
samples (only a few nanometers thick)13,14. An additional limi-
tation of photothermal nDMA is that cantilever resonance causes
artifacts in the data. Therefore, only off resonance frequencies
can be used to excite the cantilever13,14. Additional analysis of
factors that affect photothermal nDMA measurements and more
details on SBR nDMA can be found in the works of Piacenti et.al.,
2021 and 202413,14.

S4 Bimodal AFM
Bimodal AFM is a form of tapping mode (TM) AFM. In TM, a
cantilever is driven by an AC voltage so that the tip intermittently
taps the surface of the sample at a specific frequency21–24. This
frequency is usually the resonance frequency of the cantilever’s
first eigenmode22–24. An eigenmode is a natural resonance mode
of the cantilever, and occurs at a specific frequency22–24. This
eigenfrequency is called a resonance frequency when the applied
frequency matches the eigenfrequency22–24.

In standard TM, the amplitude (A) of the cantilever’s oscillation
is kept constant22–25. This feedback on the amplitude is called
amplitude modulation (AM)22–25. Other forms of TM maintain
a constant phase (φ) for phase modulation (PM), or a constant

frequency ( f ) for frequency modulation (FM)26.
While TM is typically used to obtain high resolution images

of nanoscale or atomic-scale features of a sample’s surface25,
additional information beyond sample topography is contained
in φ and f 22–24. During a TM experiment, tip/sample interac-
tion forces shift φ and f by some ∆φ = φ − φc and ∆ f = f − fc,
where φc and fc are the reference phase and amplitude of the
cantilever’s oscillation far from the sample22–24. In standard TM,
φc = 90o and fc is the resonance frequency of the cantilever22–24.
If the tip and sample have a repulsive interaction, ∆φ < 0 and
∆ f > 022–24,27. The reverse is true for an attractive interac-
tion, ∆φ > 0 and ∆ f < 0. Therefore, the mechanics of a sample
can be quantified in a TM experiment by closely tracking ∆φ or
∆ f 22–24,28.

Bimodal TM allows close tracking of ∆φ and ∆ f as well as sam-
ple topography25,26,29. In bimodal TM, the tip is driven at two
eigenmodes, usually the lowest two, instead of one, and two feed-
back loops are employed on the cantilever’s vibration25,26,29. Like
standard TM, bimodal imaging can provide high-resolution maps
of a sample’s surface25,26,29. Unlike standard TM, the additional
observables of the second eigenmode (A2, φ2, and f2 in addition
to A1, φ1, and f1) allow more of the sample’s mechanical proper-
ties to be quantified25,26,29.

In bimodal AFM, the first mode of the cantilever (the lower
frequency eigenmode) is typically subject to AM, as in standard
TM25,26,29. The second mode can be subject to AM (for AM-AM
AFM), PM (for AM-PM AFM), or FM (for AM-FM AFM)25,26. The
equations relating bimodal observables in any of these configura-
tions to the mechanical properties of a sample are interchange-
able26. AM-FM AFM is slightly more accurate than AM-AM or
AM-PM because AM-FM makes the second mode less likely to
experience a drop in signal-to-noise-ratio26. Therefore, AM-FM
AFM is typically used for quantifying sample viscoelasticity26.

S4.1 AM-FM AFM

In AM-FM AFM, the AM feedback operating on the lower eigen-
mode, quantifies the height of features on the sample’s sur-
face25,29. Additionally, the ratio of power dissipated over power
stored by the first mode’s vibration provides the loss tangent
(tanδ) of the sample30,31.

tanδ =
sin(φ1)− A1

Ar,1

cos(φ1)
(S13)

Here, φ1 is the phase of mode one, A1 is the amplitude of mode
one while interacting with the sample, and Ar,1 is the reference
amplitude of mode one far from the sample (also called the free
amplitude). Equation S13 is negative if φ1 > 90o. Therefore, the
tip and sample must exhibit a repulsive interaction for equation
S13 to apply27,30,31. A repulsive interaction is typically achieved
by pushing hard on the sample (the amplitude setpoint is less
than 75% of the free amplitude) and by using a sharp tip26,27,29.

The higher eigenmode is frequency-modulated (FM), and
closely tracks the frequency shift of the cantilever due to
tip/sample interactions, ∆ f2 25,26,29,32. Specifically, ∆ f2 = f2 −
fc,2, where f2 is the frequency of mode two on the sample, and
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fc,2 is the resonance frequency of the second eigenmode29. An
additional feedback loop for the second mode, called a dissipa-
tion feedback loop, helps prevent the amplitude of the second
mode from dropping below the detection limit if large frequency
shifts occur25,29,32. The dissipation feedback loop alters the drive
amplitude of the second mode in order to ensure that the mode
has a high enough amplitude (above the noise floor), and is not
used in AM-FM AFM calculations29. The FM loop, ∆ f2, is used
to solve for E ′ of the sample by relating ∆ f2 to ∆k2 to the contact
modulus (E ′t/s, a convolution of tip and sample E ′) by applying

fractional calculus32 or bimodal interaction theory and the Hertz
contact model26. The latter derivation is summarized here.

As the tip contacts a sample during AM-FM AFM, tip/sample
interactions shift the stiffness of the cantilever at each eigenmode
by some ∆k 26. Expressions for ∆k of each eigenmode are obtained
by modeling the cantilever’s motion at each eigenmode as a sim-
ple harmonic oscillator (SHO)26. The ∆k of each mode are then
used to calculate the contact modulus, E ′t/s, by applying the Hertz
contact model for spherical tip geometry, as well as bimodal in-
teraction theory (integrating ∆k over the profile of the tip for each
eigenmode)26,32.

E ′t/s =
4
√

2A1k2
c,2Qc,1 (∆ f2)

2

√
Rkc,1Ar,1 f 2

c,2 cosφ1
(S14)

Here, E ′t/s is the contact modulus (which converts to sample E ′), A
and φ are the amplitude and phase of the cantilever’s oscillation,
Ar is the free amplitude of the cantilever (amplitude far from the
sample), kc and Qc are the cantilever stiffness and quality factor
when not interacting with a sample, fc is the resonance frequency
of the eigenmode (when not interacting with a sample), ∆ f2 is the
frequency shift of the second mode when the tip interacts with the
sample (subject to frequency modulation), R is the radius of the
tip, and the subscript 1 or 2 indicates that a quantity respectively
belongs to the first or second eigenmode. While parameters from
both the first and second mode are used in equation S14, the feed-
back is more sensitive to changes in the second mode, and hence
the second mode contributes most to the measured E ′ 26. In order
to apply bimodal interaction theory to obtain equation S14, it is
assumed that A2 � A1

25,26. Therefore, it is recommended that
A2 ≤ 10% of A1 during AM-FM AFM experiments29. Alternative
formulations for the calculation of E ′2 that rely on different con-
tact models or different tip geometries are derived via fractional
calculus by Herruzo et. al., 201232.

Once E ′t/s is known, E ′ of the sample can be calculated via the
following relation3. Here, the subscript I represents the indenter
(the tip), subscript S represents the sample, and ν represents the
Poisson ratio of the indenter or sample3.

1
E ′t/s

=
1−νI

E ′I
+

1−νS

E ′S
(S15)

For the AC240TSA and AC160TSA cantilevers used in this
study, νI = 0.17, per the Oxford Instruments Asylum Research
software. If the cantilever is more-rigid than the sample, E ′I >>

E ′S, equation S15 simplifies to equation S163.

E ′S ≈ E ′t/s (1−νS) (S16)

It was assumed that νS = 0.5 for the SBR in this article, because
0.5 is a typical νS for SBRs13,14,17–20.

S4.2 Limitations of Bimodal AFM

AM-FM AFM, as well as other bimodal AFM techniques, must be
performed with a repulsive tip/sample interaction and with A2 ≤
10% of A1

31. In addition to these conditions, there are several
factors that can affect AM-FM AFM measurements. First, inden-
tations in AM-FM AFM are typically only a few nanometers25.
While these small indentations allow high-resolution maps of the
sample, are less-likely to damage the sample, and allow AM-FM
AFM to be performed on thin samples, they also increase the like-
lihood of incorrectly estimating E ′ and tanδ due to moisture lay-
ers (only applicable to dry samples) or variations in sample to-
pography25,31. Second, the E ′ calculation for AM-FM AFM re-
lies on the assumption that the Hertz contact model applies to
the tip/sample interaction25,26. This assumption is erroneous if a
sample adheres to the tip. Therefore AM-FM AFM can give incor-
rect quantification of E ′ on adhesive samples25,26. Third, certain
types of dissipation (like adhesion, squeeze film dampening, or
sample plasticity) can result in a calculated tanδ higher than its
actual value31. Fourth, due to the limits of the AFM, it is diffi-
cult for AM-FM AFM to accurately measure tanδ less than 0.1 or
higher than 1031. In order to minimize the possibility that the
measured E ′ or tanδ are incorrect due to any of these issues, AM-
FM AFM can be performed in conjunction with other techniques
like nDMA, or with an mDMA reference.

S5 Propagating tip radius uncertainty in Bimodal
AFM calculation of sample E ′2

AM-FM AFM quantifies E ′2 of a sample via equation S14.

E ′eff =

√
2

RA1

∆k2
2

∆k1
=

Q√
R

Knowledge of the tip radius R is required in order to apply equa-
tion S14. In the case that R is calibrated, the user manually enters
R into the software after taking AM-FM AFM measurements on a
calibration sample. Therefore, R is treated as a constant. In this
case, the error (S) of E ′ only depends on the error in Q as follows.

√
R
(
SE ′,calibrated

)
= SQ

√
R
(

SE ′

|E ′|

)
calibrated

=

(
SQ

|E ′|

)

= SQ

∣∣∣∣∣
√

R
Q

∣∣∣∣∣
(

SE ′

|E ′|

)2

calibrated
=

(
SQ

|Q|

)2
(S17)
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If the radius R is not calibrated, the mean tip radius, R, and the
standard deviation in the radius, SR, can be obtained from the tip
specifications provided by the manufacturer. For this article, the
range of radii listed by the manufacturer was used to provide a
worst case estimate of SR. The error in R can then be propagated
to the error in E ′ as follows.(

SE ′

|E ′|

)
uncalibrated

=

√(
SQ

|Q|

)2
+

(
1
2

SR

|R|

)2

(
SE ′

|E ′|

)2

uncalibrated
=

(
SQ

|Q|

)2
+

(
1
2

SR

|R|

)2
(S18)

The difference in the error of E ′ with uncalibrated and cali-
brated R is the difference between equation S18 and S17.(

SE ′

|E ′|

)2

uncalibrated
−
(

SE ′

|E ′|

)2

calibrated
=

(
1
2

SR

|R|

)2

(
SE ′

|E ′|

)
uncalibrated

=

√(
1
2

SR

|R|

)2
+

(
SE ′

|E ′|

)2

calibrated
(S19)

If R is not calibrated, the standard deviation in the measured
E ′ is larger than what it appears from the raw data. The standard
deviation of E ′ from the raw data can be used to calculate the
calibrated term of equation S19. This observation, along with
manufacturer values for SR and |R|, allow calculation of the error
in E ′ when R is not calibrated via equation S19. Equation S19
corresponds to equation 23 in section 3 of the main article.

S6 Modification of the model test for a GMM

For GMM materials, it is not possible to directly relate the value
of the slope and y-intercept of the model test line (where y =

tanδ
−1
1 , x=(E ′2 tanδ1)

−1, and subscripts indicate the eigenmode at
which the quantity was measured, equation 12) to GMM material
properties because there are too few bimodal AFM observables
and too many unknowns, even if only a subgroup of GMM arms is
excited. The unknowns include: E ′1, tanδ2, E ′′1 , E ′′2 , Ec, the number
of arms N (in the material as a whole or even a subset consisting
of more than one arm), and the N different En (corresponding to
Er,n in figure S1 (D), written as En here for simplicity) and ηn.
However, it is possible to place an upper bound on Ec from the
model test line as follows. First, it is necessary to acknowledge
the following three facts about the GMM.

Fact one, the GMM equation for E ′2 is as follows (table S1).

E ′2 = Ec +
N

∑
n=1

Enη2
n ω2

2
E2

n +η2
n ω2

2
(S20)

For ease of writing, the variable χ can be introduced as follows.

χ =
N

∑
n=1

Enη2
n ω2

E2
n +η2

n ω2 (S21)

Therefore, equation S20 can be written as follows for the mea-
sured E ′2, with the subscript 2 indicating the second eigenmode

at angular frequency ω2.

E ′2 = Ec +χ2 (S22)

Fact two, for low frequencies, ω → 0, and E ′→ Ec. For high fre-
quencies, ω → ∞,

χ →
N

∑
n=1

En (S23)

and E ′→ Ec+
N

∑
n=1

En. Therefore, there are two plateaus in E ′, one

at low frequencies and one at high frequencies. The value of E ′

never decreases with increasing frequency. Therefore, depending
on the value of χ at a given frequency, the following is true for
any E ′1 and E ′2 measured at ω1 < ω2.

χ1 ≤ χ2↔ E ′1 ≤ E ′2 (S24)

Fact three, the GMM equation for tanδ1 (table S1) is as follows.

tanδ =
E ′′

E ′
=

E ′′

Ec +χ
(S25)

The first step in relating mGM and bGM to GMM material prop-
erties is to relate tanδ2 and tanδ1 using equation S25, then alge-
braically rearranging this relation to solve for Ec as follows.

tanδ2

tanδ1
=

E ′′2 E ′1
E ′′1 E ′2

=
E ′′2 Ec +E ′′2 χ1

E ′′1 Ec +E ′′1 χ2
(S26)

Rearranging provides an expression for Ec.

Ec =
χ1−

tanδ2E ′′1
tanδ1E ′′2

χ2

tanδ2E ′′1
tanδ1E ′′2

−1
(S27)

Next equation S25 can be employed to eliminate tanδ/E ′′ from
equation S27 in favor of E ′.

Ec

(
E ′1
E ′2
−1
)
= χ1−

E ′1
E ′2

χ2 (S28)

Note that the left side of equation S28 is zero if Ec = 0 or E ′1 = E ′2.
By equation S24, E ′1 < E ′2. Therefore, E ′1/E ′2−1 < 0. Hence, from
equation S28, the following inequality results.

χ1 <
E ′1
E ′2

χ2 (S29)

Adding Ec to both sides of equation S29 results in the following.

χ1 +Ec <
E ′1
E ′2

χ2 +Ec (S30)

Recalling that tanδ = E ′′/E ′ and substituting into equation S30
results in the following inequality.

E ′1 <
E ′1
E ′2

χ2 +Ec (S31)

Hence, the following is true.

1
tanδ1

<
χ2

tanδ1E ′2
+

Ec

E ′′1
(S32)
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The inequality can be rearranged as follows. Here, mGM and bGM

are the slope and y-intercept of the model test line fit to data from
a GMM material.

mGM

tanδ1E ′2
+bGM =

1
tanδ1

<
χ2

tanδ1E ′2
+

Ec

E ′′1
(S33)

Rearranging further results in the following relation.

(mGM−χ2)

tanδ1E ′2
+bGM−

Ec

E ′′1
< 0 (S34)

Equation S34 can be used to obtain a bound for Ec by substituting
E ′2−Ec for χ2 and algebraically rearranging as follows.

mGM

E ′2
− χ2

E ′2
+ tanδ1bGM−

Ec

E ′1
< 0

mGM

E ′2
−1+

Ec

E ′2
+ tanδ1bGM−

Ec

E ′1
< 0

−mGM

E ′2
+1− tanδ1bGM +

Ec

E ′1
>

Ec

E ′2
(S35)

To place a bound on Ec, it is necessary to eliminate the re-
maining unknown, E ′1, from the relation. This task can be accom-
plished by defining α = Ec/E ′1. From GMM fact two, 0 < α ≤ 1.
Equation S35 then becomes the following.

Ec < (1+α)E ′2−mGM−E ′2 tanδ1bGM (S36)

Next, the limits of α can be substituted into equation S36, and
Ec can be estimated by assuming that the value of Ec is equal to
the bound. The most restrictive bound on Ec occurs when α = 0,
resulting in the following.

Ec < E ′2−mGM−E ′2 tanδ1bGM

Ec ∼ E ′2 (1− tanδ1bGM)−mGM (S37)

For kHz frequencies such as those in bimodal AFM, Ec can often
be several orders of magnitude smaller than E ′ because polymers
in the material have less time to rearrange in response to kHz
frequencies than lower frequencies1,2. Therefore, the bound of
α ∼ 0, and equation S37 (equation 17 in the main text), are likely
to apply.

The least restrictive bound on Ec occurs when α = 1, resulting
in the following (equation 18 in the main text).

Ec < 2E ′2−mGM−E ′2 tanδ1bGM

Ec ∼ E ′2 (2− tanδ1bGM)−mGM (S38)

Note that the condition in equation S38 is satisfied when equation
S37 is satisfied.

Since the value of Ec is estimated by assuming that Ec is close
to Ec’s upper bound, the most restrictive estimate of the bound
should be used when possible. For example, if α = 0.1, and equa-
tion S38 is used, then Ec will be set to a value (E ′2 (2− tanδ1bGM)−
mGM) higher than possible (E ′2 (1.1− tanδ1bGM)−mGM), and will
therefore be incorrect. However, if α is closer to 1, the most re-

strictive bound could yield an incorrectly low, and possibly non-
physical, estimate of Ec. In this case, equation S38 should be used
instead. If mDMA or nDMA control measurements are available
for a sample, the value of α, and hence which equation to use can
be estimated by comparing E ′ at low frequencies to E ′ at the mea-
surement frequencies. If such controls are not available, equation
S37 should be used unless nonphysical, for example negative, val-
ues of Ec result from applying equation S37.

After approximating Ec from equation S37 or S38, rough values
for the other material constants of the GMM can be obtained from
the upper bound of Ec and the bimodal AFM observables as de-
scribed in section 2.2 of the main text. However, such calculation
should only be employed after determining whether the assump-
tions leading to equation S37 are valid for each cantilever/sample
pair, specifically whether the actual value of Ec is indeed close to
the bound of Ec and whether equation S38 or S37 should be used.

Since it is necessary to assume that Ec is approximately its up-
per bound, it is therefore possible to inaccurately estimate the
value of a GMM’s Ec using this method. However, as discussed
in the main article (table 1), this assumption is still more accu-
rate than applying the same manipulations for the SLS to the
GMM (section 2.1 of the main text), since mGM 6= Ec, per rela-
tion S35. Additionally, the accuracy of assuming that the actual
value of Ec is close to the upper bound of Ec may depend on the
cantilever/sample paring, as shown by figure 5 and supplemen-
tary figure S2 where the value of Ec is less accurate in the recon-
struction from the AC160TSA compared to that of the AC240TSA.
Since f1 and f2 are higher for the AC160TSA, these results sug-
gest that the upper bound of Ec may be less accurate when higher
measurement frequencies are used in the calculation. It is reason-
able to hypothesize that, the higher the measurement frequencies,
the sample’s behavior at low frequencies is less certain, and there-
fore, the bound in Ec is also less certain. As discussed in the main
text, if it is important to be more certain of the value of Ec, it
is better to use nDMA to directly measure the sample’s viscoelas-
tic behavior at low frequencies. However, the analysis described
here can still be used to approximate Ec of a GMM as long as the
assumption that the true value of Ec is close to the upper bound
of Ec, and the limitations of this assumption, are acknowledged.
This assumption will not be valid for all materials. Therefore, for
such a relation to be used to calculate GMM material constants, it
is best to have control data, such as the DMA data in this article,
to ensure the assumption holds. If the assumption fails, analysis
should stop after the model test line (main text section 2.1) in
order to avoid incorrectly calculating material constants.

S7 Alternative Method to that Described in Section
2.2 for Estimating Sample Properties

Directly calculating material constants as described in section 2.2
requires solving a cubic polynomial for τr (equation 21). This sec-
tion provides an alternate way of calculating material constants
if there are no real or positive roots for the cubic polynomial.
While such a situation is not physical, such roots can arise if the
polynomial is flat in the vicinity of the roots, which increases the
influence of machine error on numerical outputs of the root solv-
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ing function. For such cases, the alternate method plots bimodal
AFM data in a second line (after the model test line, equation 12),
and hence has greater uncertainty than the procedure described
in section 2.2 due to the fact that fit parameters of the second line
will also carry uncertainty.

Once Ec is known, plotting bimodal AFM data in a second line
can be used to solve for the remaining material constants for sam-
ples that do not obey the KV model. The slope and y-intercept of
the model test line (equation 12) can be used to calculate Ec for
the SLS and the upper bound of Ec for a GMM. Ec = 0 for MW
materials. The remaining material constants (Er, η , τr = η/Er,
and τc = η/Ec) can be determined from E ′2, tanδ1, and Ec via the
expressions for E ′ and tanδ of the SLS (equation 5 and 7, respec-
tively).

First, equation 7) can be rearranged to solve for Ec +Er as fol-
lows.

Ec +Er =
ηω−Ec tanδ

τ2
r ω2 (S39)

Similarly, equation 5 can also be rearranged to solve for Ec +Er.

Ec +Er = E ′+
E ′−Ec

τ2
r ω2 (S40)

Equating equation S39 at the first cantilever eigenmode in bi-
modal AFM with equation S40 at the second eigenmode provides
the following relation.

ηω1−Ec tanδ1

τ2
r ω2

1
= E ′2 +

E ′2−Ec

τ2
r ω2

2
(S41)

Recalling that Ec is known from equation 12, equation S41 can be
algebraically rearranged so that the left hand side consists only of
known quantities as follows.

tanδ1

ω2
2

[
Ec +

ω2
1

ω2
2

(
E ′2−Ec

)]
=−E ′2 tanδ1ω

2
1 τ

2
r +ηω1 (S42)

Since Ec is known, the left hand side of equation S42 is known.
A plot of tanδ1

[
Ec +ω2

1
(
E ′2−Ec

)
/ω2

2
]
/ω2

2 against −E ′2 tanδ1ω2
1

should be linear, with a slope m2 = τ2
r and a y-intercept b2 = ηω1.

Therefore, τr =
√

m2, and η = b2/ω1. Er can then be calculated as
Er = η/τr, and τc = η/Ec. Note that parameter calculation from
equation S42 should only be performed if the sample is a MW,
SLS or GMM material, and if the calculations described in sec-
tion 2.2 are for some reason undesirable. If the material is a KV
material, equations 1 through 4 should be used to calculate the
sample’s material constants instead.

S8 Gaussian Fitting to AM-FM AFM Data
As shown in figure 1, distributions of the measured E ′2 and tanδ1

were sometimes multimodal. Therefore, calculating the mean
and standard deviation via the standard formulas may not rep-
resent the data well (also shown in figure 1). To overcome this
issue, distributions from individual AM-FM AFM images, as well
as the distribution of data from all images, were fit with single
term and two term Gaussians, g(x), to calculate the mean and
standard deviation.

The equation for the single term Gaussian, and the calculations

to obtain the mean, |X |, and standard deviation, S, from this fit
are shown in equations S43 through S45.

g1(x) = a1e
−
(

x−b1
c1

)2

(S43)

|X |= b1 (S44)

S =

√
c2

1
2

(S45)

Similarly, the equation for the two term Gaussian, and the calcu-
lations to obtain |X | and S of each peak from this fit are shown in
equations S46 through S48

g2(x) = a1e
−
(

x−b1
c1

)2

+a2e
−
(

x−b2
c2

)2

(S46)

|X |1 = b1 and |X |2 = b2 (S47)

S1 =

√
c2

1
2

and S2 =

√
c2

2
2

(S48)

To determine whether g1(x) or g2(x) best describes the data, if
less than 35% of each Gaussian in the two term fit overlapped,
g2(x) was used to represent the distribution, and equations S47
and S48 to calculate |X |1, S1, |X |2, and S2. Otherwise, if more
than 35% of each Gaussian overlapped g1(x) was used for the
data.

If g1(x) was used, equations S44 and S45 were used to calculate
|X | and S. If g2(x) was used, |X | and S were calculated from either
|X |1 and S1 or |X |2 and S2 by selecting the Gaussian (correspond-
ing to |X |1 and S1, or to |X |2 and S2) with |X | closest to the value
that had the highest count in the distribution. Therefore, |X | and
S calculated from this procedure represent the most prominent
peak in the distribution, which corresponds to the most prevalent
component of the distribution, and therefore of the sample.

S9 Cross-Validating Analysis Procedure Outputs
Analysis procedure outputs can be compared against a variety of
other measurements in order to ensure that parameter estimates
are reasonable, and that the assumptions used to obtain these es-
timates apply (for example, assuming that Ec of a GMM is close to
the bound of Ec, main text section 2.1.1 and supplementary sec-
tion S6). Measurements that can be used to cross-validate anal-
ysis procedure outputs include: mDMA, nDMA, nanoindentation,
relaxation experiments, creep experiments, and literature mea-
surements of similar samples. The pros and cons of each cross-
validation measurement are elaborated in the following sections.

S9.1 Cross-Validation using mDMA

If mDMA measurements are used as a control for cross-validation,
it is important to consider the fact that, for many polymeric ma-
terials, nanoscale properties such as E ′ and E ′′ can be several or-
ders of magnitude higher than macroscale properties due to the
natural scaling behavior of the polymers within the material33.
While the SBR sample in this article did not exhibit such scal-
ing13,14, this will not be the case for all samples, especially biolog-
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ical samples33. Furthermore, since nanoscale measurements only
probe a small portion of a sample, nanoscale measurements can
be more susceptible to local variations in sample structure than
macroscale measurements13. Such variations between nanoscale
and macroscale measurements could also contribute to scaling be-
havior. Additionally, as was the case in the main article, bimodal
AFM measurements of E ′2 might not match mDMA if the Hertz
model, employed in bimodal AFM’s calculation of E ′2

26,32, does
not apply. However, mDMA can still be used to cross-validate
analysis procedure outputs as long as scaling and contact model
are considered.

To cross-validate bimodal AFM outputs with mDMA, it is nec-
essary to first determine if scaling or contact model effects are
present by checking whether bimodal tanδ1 agrees with mDMA
at f1 (tanδ ( f1)) and whether E ′2 agrees with mDMA E ′ at f2
(E ′( f2)). If tanδ1 6= tanδ ( f1), it is possible that bimodal imag-
ing parameters were not properly selected (see main text figure
2) a different cantilever may be required to accurately measure
the sample, or effects such as adhesion, squeeze film damping,
or sample plasticity are present31 and bimodal AFM measure-
ments should be repeated. Otherwise, tanδ1 = tanδ ( f1) should
hold true. If E ′2 = E ′( f2), then no scaling behavior is present
and the Hertz model adequately describes the tip/sample in-
teraction during bimodal measurements. If tanδ1 agrees with
mDMA, but E ′2 6= E ′( f2), then contact model or scaling effects are
present. If changing the contact model resolves the discrepancy
between bimodal E ′2 and mDMA (as was the case for the SBR in
this article13,14), then the Hertz model does not accurately de-
scribe the tip/sample contact. If changing the contact model does
not resolve the discrepancy between E ′2 and E ′( f2), then scal-
ing behavior is present. Regardless, E ′2 +∆E should agree with
E ′( f2), where ∆E represents discrepancies due to scaling or con-
tact model effects. Without such effects, ∆E = 0.

If the sample obeys the GMM or any of the GMM’s special
cases, the analysis procedure in this article can be used to esti-
mate model parameters and reconstruct E ′( f ), E ′′( f ), and tanδ ( f )
(main text section 2.3). If the sample does not obey the GMM or
any of the GMM’s special cases, the model is unknown, and the
therefore sample parameter estimation should not be performed
(see main text figure 6). However, for samples obeying the GMM,
SLS, KV, or MW models, the shape of reconstruction curves and
the value of Ec can be cross-validated against mDMA.

Curve shapes should be similar between reconstructions and
mDMA. If the sample obeys the SLS, KV, or MW model, recon-
struction tanδ ( f ) should match mDMA tanδ ( f ). Additionally, re-
construction E ′( f ) and E ′′( f ) should match mDMA E ′( f ) + ∆E
and E ′′( f )+∆E, respectively. If the sample is a GMM, reconstruc-
tion shapes are more likely to match mDMA closer to bimodal
measurement frequencies, but start to deviate from mDMA at fre-
quencies far from f1 and f2 because the analysis procedure recon-
structs GMM samples with SLS equations (see main text section
2.3, figure 5 and supplementary figure S2).

Estimated Ec can also be compared against mDMA. For the
GMM and special cases of the GMM, E ′ = Ec when f ∼ 0 (for-
mulas in supplementary table S1). Therefore, analysis proce-
dure Ec + ∆E should match mDMA E ′ at low frequencies. For

GMM samples, the procedure calculates GMM Ec by assuming
that the true value of Ec is close to the upper bound of Ec (see
main text section 2.1.1 and supplementary section S6). There-
fore, Ec +∆E 6= mDMA E ′ at low frequencies indicates that this
assumption does not apply to the given sample, resulting in an
incorrect estimate of Ec. Furthermore, since Ec is used to solve
for the remaining material constants (equation 21 and 22, section
2.2), parameter estimates from the analysis procedure should not
be trusted without additional validation.

S9.2 Cross-Validation using nDMA

If nDMA measurements are used as a control for cross-validation,
and the same cantilever is used for bimodal and nDMA measure-
ments, there will be no overlap between nDMA and bimodal AFM
frequencies like there is with mDMA. As detailed in supplemen-
tary section S3.1, nDMA can only be performed at frequencies
that do not correspond to cantilever resonances13,14. Therefore,
bimodal AFM, which is performed at cantilever resonance fre-
quencies, will not overlap with nDMA frequencies. However, bi-
modal measurements can be extrapolated from nDMA. For exam-
ple, E ′2 and tanδ1 should not jump several orders of magnitude
compared to E ′ or tanδ at the closest nDMA frequency. Addi-
tionally, nDMA E ′ (calculated using the Hertz model as described
in supplementary section S3) at low frequencies can be used to
validate analysis procedure Ec in the same manner as mDMA.
Also, in a similar manner to mDMA, the shape of reconstruction
E ′( f ), E ′′( f ), and tanδ ( f ) curves should match nDMA curves if
the SLS, MW, or KV models apply. However, if the GMM applies,
nDMA and reconstruction curve shapes are unlikely to match (as
in figure 5 and supplementary figure S2) because GMM curves
are reconstructed using SLS equations (see main text section 2.3).
Alternatively, a different cantilever from that used to perform bi-
modal imaging can be used to obtain nDMA measurements that
overlap with bimodal AFM frequencies, thereby allowing cross-
validation via nDMA measurements to be performed in the same
manner as mDMA measurements.

Additionally, nDMA can synergize with mDMA and bimodal
measurements to provide more information about a sample. For
example, comparing nDMA and mDMA measurements can help
determine the extent to which contact model selection and scaling
behavior affect bimodal AFM measurements and analysis proce-
dure outputs. Furthermore, combining nDMA with bimodal imag-
ing eliminates the necessity of applying the analysis procedure be-
yond the model test (section 2.1) by providing more direct quan-
tification of sample mechanics at low frequencies. This is a par-
ticular advantage because, as derived in section 2.1.1, the highest
number of assumptions in the analysis procedure are made in
order to estimate Ec, and thereby subsequent material parame-
ters, from the model test fit to a GMM material. The necessity of
making these assumptions can be avoided by employing nDMA in
conjunction with bimodal imaging.

S9.3 Cross-Validation using Nanoindentation

Nanoindentation measurements can also be used to cross-validate
analysis procedure Ec. In nanoindentation, the tip is pressed into
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a sample, then withdrawn21,27. Sample indentation and the force
experienced by the cantilever are tracked throughout21,27. Fit-
ting the resulting force indentation curve with a contact model
allows quantification of a sample’s elastic modulus21,27, or for
more advanced contact models, the viscoelastic properties of SLS,
KV, or MW materials34. Typically, nanoindentation is performed
at slow indentation speeds relative to bimodal AFM, and the re-
sulting elastic modulus therefore describes elastic behavior at low
frequencies13. Since E ′ → Ec as f → 0 for the GMM, SLS, and
KV models (supplementary table S1), the elastic modulus from
indentation experiments should be on a similar order of magni-
tude to Ec from the analysis procedure. If more advanced contact
models that account for viscoelasticity are applied to indentation
curves34, and the model test indicates that the sample obeys the
SLS, MW, or KV models, then Ec, Er, and η calculated from inden-
tation experiments can be compared against analysis procedure
outputs. If the sample obeys the GMM, Er and η may not match
those of indentation experiments, since the analysis procedure is
forced to approximate a GMM as an SLS and the resulting pa-
rameter estimates therefore only describe a subset of the sample’s
response (see paper section 2.1.1, figure 5 and supplementary
figure S2). Additionally, the shape of the force indentation curve
indicates whether the contact is adhesive, and therefore whether
the Hertz model is an accurate description of the tip/sample in-
teraction during bimodal AFM34.

S9.4 Cross-Validation using Relaxation and Creep Measure-
ments

Another means of cross-validating analysis algorithm outputs is
relaxation or creep experiments. Both creep and relaxation can
be measured at the macroscale or nanoscale21,27,34. Relaxation
experiments maintain a constant strain (indentation) and observe
how stress (force) changes through time, while creep experiments
maintain constant stress (force) and observe how strain (inden-
tation) changes through time21,27,34. For the GMM, SLS, KV,
and MW models, stress through time during a relaxation experi-
ment is dictated by an exponential with time constant τr

21,27,34.
Similarly, creep is dictated by an exponential with time constant
τc

21,27,34. Therefore, fitting exponentials to creep and relaxation
measurements provides an alternate means of quantifying τr and
τc that can be used to cross-validate analysis procedure outputs.
If the sample is a KV material, creep experiment τc should match
analysis procedure τc, and the sample will not relax during a re-
laxation experiment. If the sample is a MW material, analysis pro-
cedure τr should have a similar value to relaxation experiment τr,
and both analysis procedure and creep experiment τc should be
infinite. If the sample obeys the SLS or GMM, relaxation experi-
ment τr should match analysis procedure τr and creep experiment
τc should match analysis procedure τc.

S9.5 Cross-Validation using Literature Measurements

If it is not possible to obtain mDMA, nDMA, indentation, creep, or
relaxation measurements of a sample to validate against analysis
procedure outputs, it is still possible to compare procedure out-
puts against literature measurements of similar samples via simi-

lar steps described for each type of cross-validation measurement.
In this case, emphasis should be placed on determining whether
analysis procedure outputs have a similar order of magnitude to
literature values, since the exact values of the given sample are
unknown. For example if Ec of similar samples in the literature
is 400 MPa, then sample Ec calculated by the analysis procedure
should also be a few hundred MPa.

S9.5.1 Notes for Difficult Samples

It is important to note that nDMA can only be performed on thick
samples (details in supplementary section S3.1)13,14. Addition-
ally, indentation, nanoscale creep, and nanoscale relaxation mea-
surements are sometimes difficult to perform on thin samples.
For example, many biological samples that consist of individual
biomolecules can be difficult to indent, let alone dwell on the
sample to measure creep or relaxation, because such samples are
only a few nm thick and can be easily displaced by the tip unless
sample processing, which could alter material properties, is em-
ployed to fix the molecule in place. Additionally, for thin samples,
the underlying substrate can affect indentation results, and must
be accounted for in the contact model35. Furthermore, mDMA
cannot always easily be employed in the place of nanoscale mea-
surements of single-molecule samples because ensemble proper-
ties are not always the same as the properties of individual poly-
mers33. For example, a molecule may not have the same proper-
ties in isolation compared to when the molecule is incorporated
in a polymeric matrix because the molecule experiences different
interactions and configurations in each environment2,33. In such
circumstances, where all cross-validation measurements are diffi-
cult to perform, the cross-validation experiment with the highest
chance of success would be nanoindentation with detailed analy-
sis of the force indentation curves and contact model34 or com-
parison against literature values.
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S10 Supplementary Figures and Tables

  

E’
 (

Pa
)

E’
’ (

Pa
)

Individual Reconstructions

mDMA
nDMA (Hertz Model) 

Mean Reconstruction

AM-FM AFM Measurement
Reconstruction at AM-FM AFM Frequency 1

(C)

(B)

(A)

Individual Reconstructions

mDMA
nDMA (Hertz Model)

Mean Reconstruction
Reconstruction at AM-FM AFM Frequencies

Individual ReconstructionsAM-FM AFM Measurement

Reconstruction at AM-FM AFM Frequency 2mDMA
nDMA Mean Reconstruction

Fig. S2 Frequency dependent behavior of the SBR (AC160TSA). Storage
moduli (E ′), loss moduli (E ′′), and loss tangents (tanδ) over a range of
frequencies are shown in (A), (B), and (C), respectively. Mean AM-FM
AFM reconstructions are compared to control macroscale dynamic me-
chanical analysis (mDMA, squares) and nanoscale DMA (nDMA, lines)
measurements. All data besides the reconstructions have been published
previously14, and are used here with permission. AM-FM AFM recon-
structions from each of the 13 individual AM-FM AFM images are also
shown in gray. Red arrows indicate regions where the reconstruction de-
viates from the controls by failing to account for all arms in the GMM. E ′

and E ′′ for nDMA were calculated using the Hertz contact model. AM-
FM AFM and nDMA were performed using an AC160TSA cantilever.
Error bars and shading represent the standard deviation.
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Table S2 Model test metrics for each individual AM-FM AFM image of the sterine-butadiene rubber (SBR). In amplitude modulation-frequency
modulation atomic force microscopy (AM-FM AFM), the AFM cantilever is vibrated at two eigenmodes. The loss tangent of a sample is measured via
the lower eigenmode vibration (tanδ1), and the storage modulus of the sample via the higher eigenmode vibration (E ′2). As derived in section 2.1 of
the main article, a plot of tanδ

−1
1 vs. (E ′2 tanδ1)

−1 should be linear if the sample obeys the general Maxwell model (GMM), standard linear solid (SLS),
Kelvin-Voigt (KV) or Maxwell (MW) model (equation 12). In other words, fitting a line to tanδ

−1
1 vs. (E ′2 tanδ1)

−1 should have high goodness of fit
metrics, in this case R2 value, if any of these four models can be used to describe the sample. If both the slope (m) and y-intercept (b) are greater
than zero, the sample obeys the SLS or the GMM. If m = 0 and b > 0, the sample is a MW material. If m > 0 and b = 0, the sample is a KV material.
Linear regression metrics detailing fit R2, m, and b of the model test line (equation 12) to data from each individual AM-FM AFM image of the SBR
are shown below. Measurements of the SBR were performed using AC240TSA and AC160TSA cantilevers. Numbers in parenthesis indicate the 95%
confidence interval.

Cantilever Image Number Slope (95% Confidence Interval) y-Intercept (95% Confidence Interval) Fit R2

1 3.5642×108 (3.5639×108 - 3.5645×108) 0.2355 (0.2354 - 0.2357) 0.9966
2 3.3664×108 (3.3658×108 - 3.3669×108) 0.2506 (0.2504 - 0.2507) 0.9886
3 3.2344×108 (3.2342×108 - 3.2347×108) 0.2308 (0.2307 - 0.2309) 0.9979
4 3.2675×108 (3.2672×108 - 3.2677×108) 0.2310 (0.2308 - 0.2311) 0.9972
5 3.5771×108 (3.5706×108 - 3.5836×108) 0.2107 (0.2106 - 0.2108) 0.9448
6 3.0099×108 (3.0052×108 - 3.0146×108) 0.2706 (0.2705 - 0.2707) 0.9598
7 2.9664×108 (2.9621×108 - 2.9707×108) 0.2520 (0.2520 - 0.2521) 0.9649
8 2.9058×108 (2.9017×108 - 2.9099×108) 0.2594 (0.2593 - 0.2595) 0.9667
9 2.7743×108 (2.7743×108 - 2.7744×108) 0.2678 (0.2677 - 0.2680) 0.9997

10 2.7808×108 (2.7806×108 - 2.7810×108) 0.2605 (0.2604 - 0.2607) 0.9976
11 2.7392×108 (2.7390×108 - 2.7395×108) 0.2665 (0.2664 - 0.2667) 0.9973
12 3.2635×108 (3.2634×108 - 3.2637×108) 0.2191 (0.2189 - 0.2192) 0.9985

AC240TSA 13 2.6619×108 (2.6614×108 - 2.6623×108) 0.2788 (0.2787 - 0.2789) 0.9957
14 2.4033×108 (2.4005×108 - 2.4060×108) 0.2375 (0.2375 - 0.2376) 0.9684
15 1.0957×108 (1.0956×108 - 1.0957×108) 0.2239 (0.2236 - 0.2242) 0.9999
16 0.3467×108 (0.3467×108 - 0.3468×108) 0.3873 (0.3869 - 0.3876) 0.9996
17 0.4585×108 (0.4585×108 - 0.4585×108) 0.4999 (0.4991 - 0.5006) 0.9997
18 0.6107×108 (0.6107×108 - 0.6107×108) 0.4464 (0.4457 - 0.4470) 0.9999
19 0.6760×108 (0.6754×108 - 0.6766×108) 0.3608 (0.3606 - 0.3611) 0.9768
20 0.5735×108 (0.5732×108 - 0.5739×108) 0.3590 (0.3587 - 0.3593) 0.9891
21 0.4519×108 (0.4519×108 - 0.4519×108) 0.5334 (0.5330 - 0.5338) 1.0000
22 0.6144×108 (0.6144×108 - 0.6144×108) 0.3258 (0.3255 - 0.3261) 1.0000
23 0.6744×108 (0.6737×108 - 0.6751×108) 0.3284 (0.3282 - 0.3285) 0.9807
24 0.6417×108 (0.6411×108 - 0.6423×108) 0.3150 (0.3148 - 0.3151) 0.9843
25 0.5195×108 (0.5195×108 - 0.5196×108) 0.6751 (0.6744 - 0.6757) 1.0000

1 7.7580×109 (7.7534×109 - 7.7625×109) 0.1634 (0.1631 - 0.1637) 0.9628
2 6.5660×109 (6.5629×109 - 6.5691×109) 0.1481 (0.1479 - 0.1482) 0.9823
3 5.4292×109 (5.4258×109 - 5.4326×109) 0.1270 (0.1268 - 0.1272) 0.9822
4 3.7682×109 (3.7568×109 - 3.7796×109) 0.1857 (0.1855 - 0.1859) 0.8671
5 5.1142×109 (5.1114×109 - 5.1169×109) 0.1224 (0.1223 - 0.1226) 0.9917
6 4.9598×109 (4.9576×109 - 4.9619×109) 0.1507 (0.1505 - 0.1509) 0.9952

AC160 TSA 7 4.8194×109 (4.8146×109 - 4.8243×109) 0.1681 (0.1678 - 0.1684) 0.9612
8 5.1104×109 (5.1047×109 - 5.1161×109) 0.1558 (0.1555 - 0.1561) 0.9484
9 4.1941×109 (4.1837×109 - 4.2045×109) 0.2412 (0.2408 - 0.2417) 0.8553

10 5.3375×109 (5.3302×109 - 5.3448×109) 0.1710 (0.1706 - 0.1713) 0.9158
11 5.3906×109 (5.3840×109 - 5.3973×109) 0.1781 (0.1778 - 0.1783) 0.9407
12 4.8897×109 (4.8831×109 - 4.8962×109) 0.2133 (0.2130 - 0.2135) 0.9416
13 4.7165×109 (4.7109×109 - 4.7220×109) 0.2176 (0.2173 - 0.2179) 0.9555
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