Supporting Information: Engineering Bacterial Polymers for Biomanufacturing: Characterization and Manipulation of Sphingomonas sp. LM7 Extracellular Polysaccharide

Ellen W. van Wijngaarden † , Alexandra G. Goetsch ‡ , Ilana L. Brito ¶ , David M. Hershey ‡ , and Meredith N. Silberstein †

†Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY ‡Department of Bacteriology, University of Wisconsin-Madison, Madison, WI ¶Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA

> E-mail: meredith.silberstein@cornell.edu Phone: 607/255-5063

Contents

1	Supporting	Figures
---	------------	----------------

1.1 Uniaxial Tensile Tests	. 2
1.2 The Effect of Water Content on Rheological Properties: Strain Sweep	. 2
$1.3~{ m How}$ Bivalent and Monovalent Ions alter Rheological Properties: Strain Sweep	. 3
1.4 Dialysis-Based Purification Process	. 3
$1.5~{ m The~Effect~of~Ultracentrifugation~on~Lectin~Binding~and~Rheological~Properties}$.	. 5
1.6 Rheological Properties of Protein Knockout Material	. 5
1.7 Extracellular DNA Analysis	. 6
1.8 Thermogravimetric Analysis	. 7
Supporting Tables	
2.1 Strains Used in This Study	. 8
2.2 Plasmids Used in This Study	. 8

1 Supporting Figures

1.1 Uniaxial Tensile Tests

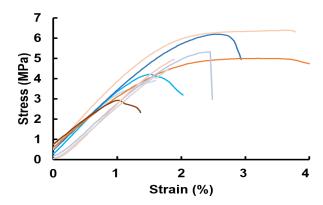


Figure S1: Tensile testing trials for films showing variation in the fracture strength of the material. Young's Modulus is consistent among tests.

1.2 The Effect of Water Content on Rheological Properties: Strain Sweep

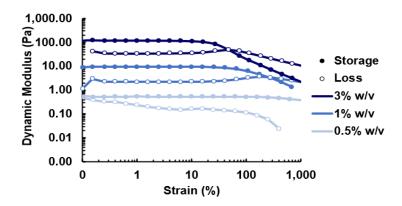


Figure S2: Strain sweep results comparing sample water content showing the gel-like behavior. Dynamic moduli increase for higher w/v ratios.

$1.3~{\rm How}$ Bivalent and Monovalent Ions alter Rheological Properties: Strain Sweep

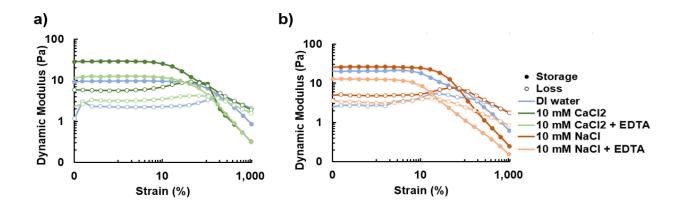


Figure S3: Strain sweep results comparing the addition of a) bivalent ions and b) monovalent ions.

1.4 Dialysis-Based Purification Process

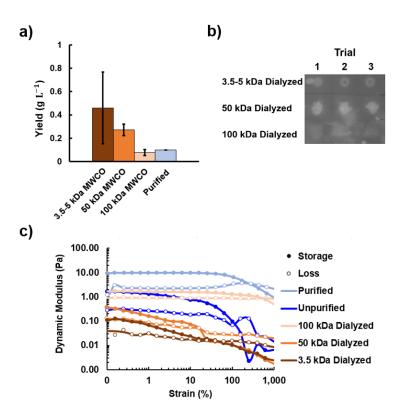


Figure S4: a) Magnified view of sample yields from varying dialysis MWCO values compared to the yield of the full enzymatic purification process. b) A dot blot showing lectin-glycan binding for dialysis groups confirming the presence of polysaccharide c) Strain sweep of samples at various levels of purification.

$1.5\ {\rm The}\ {\rm Effect}$ of Ultracentrifugation on Lectin Binding and Rheological Properties

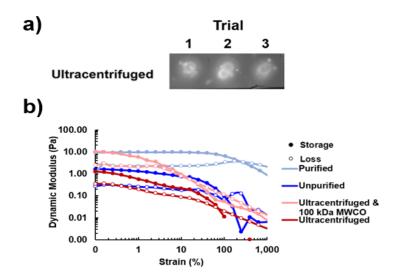


Figure S5: a) A dot blot showing lectin-glycan binding in the sample confirming the presence of polysaccharide post ultracentrifugation. b) Strain sweep of purified, unpurified, and ultracentrifuged samples.

1.6 Rheological Properties of Protein Knockout Material

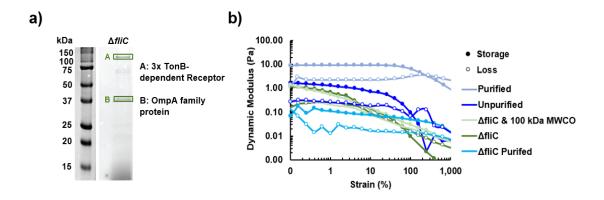


Figure S6: a) Secreted proteins from the $\Delta prmJ$ $\Delta fliC$ strain b) Strain sweep of purified, unpurified, and protein knockout material samples.

1.7 Extracellular DNA Analysis

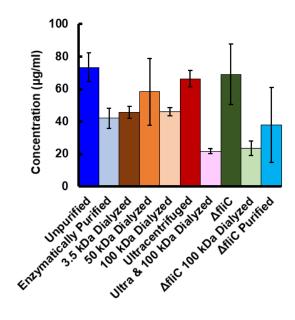


Figure S7: Extracellular DNA abundance in samples tested.

1.8 Thermogravimetric Analysis

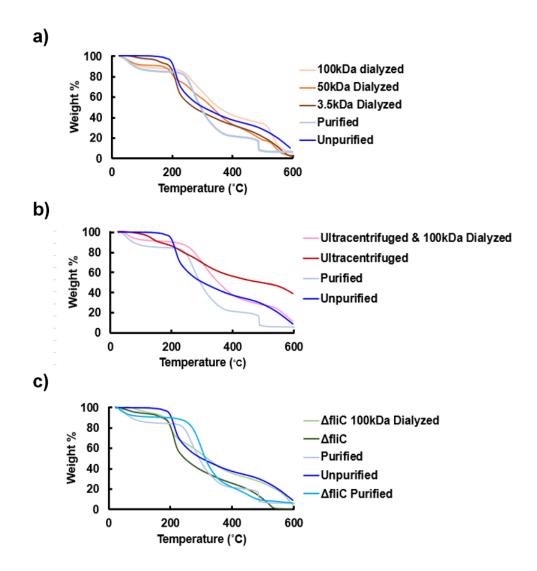


Figure S8: Thermogravimetric analysis for a) dialyzed material, b) ultracentrifuged material and c) protein knockout material.

2 Supporting Tables

2.1 Strains Used in this Study

Table S1: Strains used in this Study

Strain	Organism	Genotype	Description	Source
DH173	Sphingomonas sp. LM7	LM7	Wild Type	Hershey Lab[1]
DH313	Sphingomonas sp. LM7	$\Delta prmJ$	In frame deletion of BXU08_RS00395	Hershey Lab[1]
DH1312	Sphingomonas sp. LM7	$\Delta fliC$	In frame deletion of BXU08_RS13585	This work
DH1313	Sphingomonas sp. LM7	$\Delta prmJ\Delta fliC$	In frame deletion of BXU08_RS13585 in DH313 back- ground	This work

2.2 Plasmids Used in this Study

Table S2: Plasmids used in this Study

Plasmid	Description	Antibiotic	Reference
pNPTS138	Suicide plasmid for deletion in <i>Sphingomonas</i> sp. LM7; carries sacB for counter-selection	Km	M. Alley[1]
pDH298	To delete $prmJ$; Gibson cloning of fused upstream and downstream regions of BXU08_RS00395	Km	Hershey Lab[1]
pDH1329	To delete $fliC$; commercial synthesis of fused BXU08_RS13585 upstream and downstream regions, inserted into SpeI/HindIII site of pDH100	Km	Hershey Lab[1]
pDH1331	To delete $fliC$; commercial synthesis of fused BXU08_RS13585 upstream and downstream regions, inserted into SpeI/HindIII site of pDH100	Km	This work

References

[1] Alexandra G. Goetsch et al. A novel exopolysaccharide pathway from a freshwater Sphingomonas isolate. Nov. 4, 2023. DOI: 10.1101/2023.11.03.565537. URL: https://www.biorxiv.org/content/10.1101/2023.11.03.565537v1 (visited on 11/13/2023).