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S1. Comparison between Random Field NafionTM Structures and Simulated 
NafionTM Structures

In our recent molecular simulation work1, we ran coarse-grained molecular dynamics (CGMD) 
simulations of NafionTM membranes for a variety of ionomer designs and extents of hydration. To 
confirm the random field structures (which are purely based on scattering profiles and not on 
chemistry or polymer design) are faithful to the structures seen in CGMD simulations (which do 
account for the chemistry and polymer design), we generate random field structures from the 
scattering profiles computed from the molecular dynamics simulations. We then compute the size 
distribution, lineal path function, and tortuosity of the hydrophilic domains in the random field 
structures and compare these metrics to those computed from the CGMD simulations. These 
analyses are performed using the PoresPy package.2 We perform this reconstruction for the 
polymer design  (representing the number of backbone beads between each side chain), Γ𝑠𝑐 = 4

 (representing the number of beads that compose each side chain), and  𝑙𝑠𝑐 = 2 𝑁𝐵𝐵 = 100

(representing the number of beads composing the polymer’s backbone). This set of parameters 
corresponds to an equivalent weight (EW) of 1100, and we study this system at six different levels 
of hydration (  = 1, 2, 3, 6, 12, and 20) where =[H2O]/[SO3

-]. Further details about these 𝜆 𝜆
parameters and the CGMD simulations can be found in SI Ref. 1.

We note that none of the CGMD simulations in our work in SI Ref. 1. display semi-crystallinity 
or globally anisotropic structures forming while the experimental measurements in the main 
manuscript are from NafionTM with some crystalline domains and in some samples anisotropic 
structures. While this comparison of various structural features between simulation data and 
reconstructions reaffirms the random field model as valid for the isotropic distribution of 
hydrophilic domains and amorphous polymer domains, our extension to include crystalline 
domains has no such validation, although the approximate size and spacing of the crystalline 
domains is expected to be reasonable. Likewise, the anisotropy seen in our NafionTM scattering 
profiles is often non-existent and, when present, is comparably minimal to other anisotropic 
scattering profiles, for example of polymeric materials under deformation. For this reason, in this 
case we believe the extension to anisotropic scattering is justifiable.

For ease of comparison between the CGMD simulations structures (which are represented as bead 
coordinates) and the random field reconstructions (which are represented as voxels), the CGMD 
simulation coordinates are converted to a voxelated representation. Each voxel is identified as one 
of two phases based on the identity of the nearest simulation bead: either hydrophilic (sulfonic 
acid group, water, hydrated counterion) or hydrophobic (polymer backbone, polymer sidechain). 
We compute the scattering as described in Section S4, radially averaging the 3D FFT to obtain the 
1D scattering profile. Reconstructions are constructed based on main manuscript’s Eqs. 2-7, with 
voxel sizes and total reconstruction sizes identical to the voxelated representations of the CGMD 
simulations. The hydrophilic volume fraction used in the reconstruction process is chosen to 
directly match that of the voxelated representation of the simulation. 
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Figure S1: Comparison of the input scattering profile computed from CGMD simulation (black) to the 
computed scattering profile of the reconstruction (red) at different hydrations. Shaded regions denote 
the standard deviation of three simulation trials/reconstructions.

Figure S1 shows good agreement between the scattering profiles computed from the original CG 
MD simulations of SI. Ref. 1 and the reconstructions from our presented approach in this main 
paper. We obtain a good scattering match especially at high hydration. At low hydration, the 
scattering intensities computed from the random field reconstructions are higher than the input 
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scattering from the CGMD simulations, however, the fine structure at the length scales of single 
clusters is still recreated well. We attribute the poor low-q fit in part to noise at low-q resulting 
from the finite size GGMD simulations. Visually in Figure S2, the reconstructions show similarity 
to the simulation structures. 

Figure S2: 2D slices of the voxelated CGMD simulation (left), and of the reconstruction (right) at 
different hydrations. Red regions denote amorphous polymer domains, and blue regions denote the 
hydrophilic domains. The images all represent approximately 34x34nm
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Figure S3: Comparisons between CGMD simulations (black curves) and reconstructions (red curves) 
at different levels of hydration using hydrophilic domain sizes. Shaded regions denote the standard 
deviation of three simulation trials/reconstructions.
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Figure S4: Comparisons between CGMD simulations (black curves) and reconstructions (red curves) 
at different levels of hydration using lineal path lengths of the hydrophilic domains. Shaded regions 
denote the standard deviation of three simulation trials/reconstructions.
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Figure S5: Comparisons between CGMD simulations (black curves) and reconstructions (red curves) 
at different levels of hydration using the tortuosity of hydrophilic domains. Shaded regions denote the 
standard deviation of three simulation trials/reconstructions.

In Figure S3, the hydrophilic domain sizes, though noisy, show qualitative agreement as λ is 
increased. Lineal path functions in Figure S4 show good agreement except at small distances 
which is on the order of our voxel size (2.5-3Å depending on the simulation size). The tortuosity 
of the hydrophilic domains also qualitatively agree (Figure S5). The poorer match at low λ is 
expected as the poorer match at low-q in the scattering shown in Figure S1 indicates that we do 
not capture the large length-scale structure (which will directly affect the tortuosity) as well in the 
lower λ simulations when compared to the simulations at higher λ.

Overall, there are some discrepancies between the scattering profile and tortuosity of the 
reconstructions at low hydration, but the structural metrics tend to agree much better at higher 
hydration. As we aim to use this method to reconstruct scattering from hydrated membranes, we 
are not concerned with the poorer match at low hydration.
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S2. Description of Numerical Implementation of the Steps in Section II of the 
Main Paper

Figure S6 demonstrates the difference in computed scattering between a continuous random 
field and the thresholded version of that same field (which has been thresholded at , giving 𝛼 = 0
equal volume fractions of both the blue and red phases). It is readily apparent that the computed 
scattering is altered by the thresholding, a fact that is accounted for by Eqs. 3-7 in the main text.

A. Computation of spectral density f(q) from 1d I(q) via Main Paper’s Equations 3, 4, 6, & 7

Both Eqs. 2 and 3 involve integrating from q = 0 to q = , but any SAXS data only spans a finite ∞
q-range. We extrapolate the scattering curves to span the q-range spanning 10-7 to 105Å-1. For 1D 
experimental scattering data, I(q), which spans the range , we use the following 𝑞𝑙𝑜𝑤 ≤ 𝑞 ≤ 𝑞ℎ𝑖𝑔ℎ

extrapolation scheme:

𝐼(𝑞) =  { 𝐼𝑙𝑜𝑤,    𝑞 < 𝑞𝑙𝑜𝑤 

𝐼(𝑞ℎ𝑖𝑔ℎ) (𝑞ℎ𝑖𝑔ℎ

𝑞 )𝑚,     𝑞 > 𝑞ℎ𝑖𝑔ℎ�
Here,  is the average intensity at the five lowest data points in the original I(q). The slope of 𝐼𝑙𝑜𝑤

the power-law at high q, m, is computed by fitting the intensity of the ten highest data points in 
the original I(q).

       (Main paper Eq. 3)         
Γ(𝑟) =

 1

2𝜋2

∞

∫
0

(𝑞2𝐼(𝑞)
𝑠𝑖𝑛⁡(𝑞𝑟)

𝑞𝑟
) 𝑑𝑞

Figure S6: Demonstration of the difference in computed scattering between a continuous random field 
and the same field that has been thresholded. Both scattering profiles have been normalized by the 
intensity of the scattering peak.
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Simpson’s method is used to evaluate the integral with 10,000 log-spaced q-points over the range 
10-7 to 105Å-1. For each value of q,  is evaluated by interpolating the input I(q) data using 𝐼(𝑞)
quadratic splines. This integral is evaluated for 10,000 values of  evenly spaced from 0 to 𝑟
1000Å.

       (Main paper Eq. 4)                   
𝑄 =  

∞

∫
0

𝑞2𝐼(𝑞) 𝑑𝑞

Simpson’s method is used to evaluate the integral at the same q-points as described for Eq. 3.

       (Main paper Eq. 6)     
𝐶𝑥𝑥(𝑟) =

1
2𝜋

 
𝑔(𝑟)

∫
0

exp ( ‒
𝛼2

1 + 𝑢) ∗
1

1 ‒ 𝑢2
𝑑𝑢

The integral is evaluated for 1000 values of  ranging from -0.75 to 1.0 using Gaussian 𝑔(𝑟)

quadrature. Using the corresponding values of  computed for each value of , we use 𝐶𝑥𝑥(𝑟) 𝑔(𝑟)

quadratic spline interpolation for the function  to compute the value of   𝑔(𝑟) = 𝑓(𝐶𝑥𝑥(𝑟)) 𝑔(𝑟)

from  at every value of .𝐶𝑥𝑥(𝑟) 𝑟

       (Main paper Eq. 7)          
𝑓(𝑞) =  

∞

∫
0

(4𝜋𝑟2𝑔(𝑟)
𝑠𝑖𝑛⁡(𝑞𝑟)

𝑞𝑟
) 𝑑𝑟

Simpson’s method is used to evaluate the integral with the same values of  we have used so far. 𝑟
This integral is evaluated for the same q-values that were used in the evaluation of Eq. 2.

Occasionally, we obtain spectral density values which are negative for certain q-values. This 
cannot be the case, since the methods of generating random fields (main text Eqs. 8/9) require 
f(q) to be non-negative. This tends to occur more frequently when the volume fraction of either 
phase approaches 0. We have found that generally, the negative values are small in magnitude, 
and setting these portions of the spectral density to 0 does not significantly change the scattering 
profile.

B. 3D Spectral Density Interpolation

3D interpolation is computed using the following equation, which smoothly interpolates between 

 at  radians and  at  radians:𝑓2𝐷(𝑞𝑥, 𝑞𝑦) 𝜑 =
𝜋
2 𝑓𝑧(𝑞𝑧) 𝜑 = 0

𝑓3𝐷(𝑞𝑥, 𝑞𝑦, 𝑞𝑧) = 𝑓2𝐷(𝜌𝑐𝑜𝑠𝜃, 𝜌𝑠𝑖𝑛𝜃)sin2 𝜑 +  𝑓𝑧(𝜌)cos2 𝜑
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Here , , and  are the standard spherical coordinates of .  is the two-𝜌 𝜃 𝜑 (𝑞𝑥, 𝑞𝑦, 𝑞𝑧) 𝑓2𝐷

dimensional spectral density computed from  linearly interpolated across  and . 𝐼2𝐷(𝑞𝑥, 𝑞𝑦) 𝑞𝑥 𝑞𝑦

 is the assumed 1D spectral density in the z-direction, linearly interpolated across . 𝑓𝑧 𝑞𝑧

C. Computation Time for Different 
Parts of Method

In Figure S7, we show the computation 
times for the various steps of the method. 
Times were tracked for 10 runs of the data 
shown in main text Figures 10/11 on a Dell 
Precision T1700 desktop computer. 
Because the time scale for the first step is so 
much larger than the following steps, we 
report this time normalized by the number 
of angles into which the original 2D 
scattering profile is discretized. For our case 
of , the total time for the first step is 𝑛𝜃 = 10

~190 seconds. This time is primarily 
dependent on , as well as the number of q 𝑛𝜃

and r values used in the numerical 
integration as described above. 

The time for the first two steps is an up-front 
cost: Once those steps have been completed 
(in our case ~200 seconds), as many 
structures as desired can be generated in ~6 

seconds each. This is the time need to create 256x256x256 voxel reconstruction. If reconstructions 
with lower resolution are acceptable, the 6-second reconstruction time would be even less. 

Figure S7: Computation time for various steps of the 
method. Error bars indicate the standard deviation 
of 10 reconstruction runs.
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S3. Procedures for Obtaining and Pre-processing Small-Angle X-ray 
Scattering Data

A. Protocol for Obtaining SAXS data

SAXS data was obtained using the Xenocs Xeuss 2.0 SAXS/WAXS (Grenoble, France) instrument 
at the Advanced Material Characterization Laboratory at the University of Delaware, using a 
copper anode source (λ = 1.54189 Å). The sample-detector distance used was 700 mm for a 
collection time of 300 seconds. “Scatterless” collimation slits were set at 1.2 mm and 0.6 mm for 
the first and second sets, respectively. 2D images were collected using a Dectris Pilatus 3 300K 
detector (Baden-Daettwil, Switzerland). 2D images were not corrected for background scattering.

Dry membrane samples were conditioned at room temperature in a humidity-controlled 
environment (50% relative humidity) before transferred. Samples were adhered with tape to the 
sample holder. 

Hydrated membrane samples were boiled in water for one hour and then kept enclosed in a plastic 
bag with excess water. Samples were sandwiched between sheets of Kapton ® with a few drops 
of water and compressed in the Xenocs Xeuss gel holders. The gel holders are designed to maintain 
solvation of gels in the vacuum environment of the x-ray instrument. 

B. Preprocessing of Experimental 2-Dimensional Scattering Profiles:

The 2D scattering profiles were in the EDF file format. The EDF file contained the 2D image array 
that mapped the scattered intensity values on the collector plate. The header of the EDF file 
contained relevant information like the location of the beam center, pixel size, sample distance, 
etc. which were used to correctly interpret the  scale. Since the beam center is usually not at the 𝑞
image center, some pre-processing of the data was needed to correctly identify the data in  𝐼(𝑞,𝜃)
format at specific  and  values. The first step was to recenter the image by shifting the pixel 𝑞 𝜃
indices so that the beam center becomes the origin (0,0) in pixel coordinates. Using the knowledge 
that 2D scattering profiles have an inversion symmetry about the beam center , the (𝐼(𝑞) = 𝐼( ‒ 𝑞))
image can be extrapolated to obtain data for all  values. This is achieved by considering that for 𝜃
a pixel index ), if there is a corresponding value at , then the two values should be (𝑚,𝑛 ( ‒ 𝑚, ‒ 𝑛)
averaged and used as the scattered intensity at both ) and ) locations. On the other (𝑚,𝑛 ( ‒ 𝑚, ‒ 𝑛
hand, if there is no value at  due to truncation or the size of the original image, then the ( ‒ 𝑚, ‒ 𝑛)
value at  can be copied to ). After this processing step, the pixel indices were (𝑚,𝑛) ( ‒ 𝑚, ‒ 𝑛
converted to  values, by using the sample distance , the X-ray wavelength  and the pixel sizes 𝑞 𝐷 𝜆

. The equation to convert pixel indices ) to  is written as:(𝑝𝑥,𝑝𝑦) (𝑚,𝑛 (𝑞𝑥,𝑞𝑦)

(𝑞𝑥,𝑞𝑦) =
4𝜋
𝜆 (sin (1

2
tan ‒ 1 (𝑚𝑝𝑥

𝐷 )) ,sin (1
2

tan ‒ 1 (𝑛𝑝𝑦

𝐷 )) )
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Subsequently, the image was cropped to a square aspect ratio such that the  ranges in the  and 𝑞 𝑥
 directions become identical.𝑦

S4. Computation of Scattering Profiles from 3D Voxel Reconstructions

The scattering profiles of the reconstructed structures are computed using a three-dimensional fast 
Fourier transform (FFT) of the 3D voxel reconstruction.3, 4

𝐼(𝑞𝑥, 𝑞𝑦, 𝑞𝑧) = |𝐹(𝜌(𝑥))|2𝑃𝑣𝑜𝑥𝑒𝑙(𝑞𝑥, 𝑞𝑦, 𝑞𝑧)2

Here,  denotes the 3-dimensional fast Fourier transform,  denotes the x-ray scattering length 𝐹 𝜌(𝑥)
density corresponding to the phase (hydrophilic domain, amorphous domain, or crystalline 
domain) at position x.  is the form factor amplitude of the cubic voxels with side 𝑃𝑣𝑜𝑥𝑒𝑙(𝑞𝑥, 𝑞𝑦, 𝑞𝑧)

length a:

𝑃𝑣𝑜𝑥𝑒𝑙(𝑞𝑥, 𝑞𝑦, 𝑞𝑧) = 𝑎3
sin (𝑞𝑥𝑎

2 )
(𝑞𝑥𝑎

2 )
sin (𝑞𝑦𝑎

2 )
(𝑞𝑦𝑎

2 )
sin (𝑞𝑧𝑎

2 )
(𝑞𝑧𝑎

2 )
 We use the following values from that have been estimated from previous work on x-ray scattering 
and computational reconstructions of NafionTM systems:5

𝜌𝑎𝑚𝑜𝑟𝑝ℎ𝑜𝑢𝑠 = 0.548 
𝑒 ‒

Å3

𝜌𝑐𝑟𝑦𝑠𝑡𝑎𝑙𝑙𝑖𝑛𝑒 = 0.632 
𝑒 ‒

Å3

𝜌ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 = 0.334 
𝑒 ‒

Å3

When computing the FFT, each voxel has a corresponding frequency defined by:

𝑞𝑥, 𝑞𝑦, 𝑞𝑧 = 2𝜋[𝑖 ‒
𝑁
2

𝑁𝑎 ],      0 ≤ 𝑖 < 𝑁

where  is the index along the x, y, or z axis,  is the size of the array (number of voxels) along 𝑖 𝑁
one dimension, and  is the voxel size in Angstroms. 𝑎

The two-dimensional scattering profile is taken as the FFT intensities where the z-component of 
the corresponding frequency is 0 ( = 0). For one-dimensional scattering profiles (i.e. in Figure 𝑞𝑧

S1), the FFT intensities are radially averaged. 
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Because of the finite size of the reconstructions, there is generally significant noise in the computed 
scattering profiles at low-q. To lessen this noise, for all reported scattering calculations (except 
where noted), we perform 30 reconstructions and average the computed scattering profiles across 
all reconstructions.
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S5. Resulting Structures Assuming Alternative 𝑓(𝑞𝑧) = 𝑓(𝑞𝑥)

We first show the resulting  contours to compare them to the assumption  azimuthal 𝐼𝑟𝑒𝑙 𝑓(𝑞𝑧) =

average of   in Figure S8. This is analogous to Figures 8 and 9 in the main text. 𝑓(𝑞𝑥, 𝑞𝑦)

Figure S8: Comparison of volume fraction grid search for two different assumptions for the spectral 
density in the z-direction ( ). Top row:  = azimuthal average of . Bottom row:  𝑓(𝑞𝑧) 𝑓(𝑞𝑧) 𝑓(𝑞𝑥, 𝑞𝑦) 𝑓(𝑞𝑧)

= . Left column: Heatmap showing the values of  at varying volume fractions  and 𝑓(𝑞𝑥) 𝐼𝑟𝑒𝑙 𝜙ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐

. Center column: contours at different values of  interpolated from the grid heatmap. Right 𝜙𝑐𝑟𝑦𝑠𝑡 𝐼𝑟𝑒𝑙

column: The interpolated contour to get a value of  from the reconstructed scattering profile that is 𝐼𝑟𝑒𝑙

equivalent to the experimental  (0.9163)ℎ𝑟𝑒𝑙

The overall shapes of the contours are similar to those shown between the two cases. For the case 

where  = , the crystalline volume fractions are higher for any given  contour and 𝑓(𝑞𝑧) 𝑓(𝑞𝑥) 𝐼𝑟𝑒𝑙

, indicating that a greater fraction of the polymeric material needs to be crystalline 𝜙ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐

under this assumption in comparison to the assumption that  = azimuthal average of 𝑓(𝑞𝑧)

. Specifically, for the experimental relative peak intensity value of 0.9163 and 𝑓(𝑞𝑥, 𝑞𝑦)
= 0.35,  must be 0.0669 for the former case and 0.0561 for the latter case.𝜙ℎ𝑦𝑑𝑟𝑜𝑝ℎ𝑖𝑙𝑖𝑐 𝜙𝑐𝑟𝑦𝑠𝑡
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Figure S9: Comparison of reconstructions under two different assumptions for the spectral density in 
the z-direction ( ). Left: Reconstruction from  = azimuthal average of  (Same as 𝑓(𝑞𝑧) 𝑓(𝑞𝑧) 𝑓(𝑞𝑥, 𝑞𝑦)

main text Figure 10). Right: Reconstruction from  = . 𝑓(𝑞𝑧) 𝑓(𝑞𝑥)

We show the comparison between the reconstructions using the two different assumptions in 
Figure S9. While the differences between the two assumptions seem subtle for this case, we would 
expect them to become more significant if the experimental 2D scattering profile contains stronger 
anisotropy than what we see in our SAXS profiles of NafionTM. The structural differences are more 
apparent in the computed 2D scattering profiles along different axes, which are shown in Figure 
S10. While the xy-scattering are intentionally similar between the two cases (we have generated 
these reconstructions such that this will match the experimental scattering profile), the yz and xz-
scattering show differences primarily in the matrix knee. In the yz-scattering profiles, there is a 

greater degree of anisotropy in the  direction when the   =  assumption is made. In 𝑞𝑧 𝑓(𝑞𝑧) 𝑓(𝑞𝑥)

the xz-scattering, there is anisotropy in the z-direction for the  = azimuthal average of 𝑓(𝑞𝑧)

 assumption, but when  = , the xz-scattering plane is isotropic, as expected.𝑓(𝑞𝑥, 𝑞𝑦) 𝑓(𝑞𝑧) 𝑓(𝑞𝑥)
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Figure S10: Comparison of computed scattering profiles under two different assumptions for the 
spectral density in the z-direction ( ). Top row: Reconstruction from  = azimuthal average of 𝑓(𝑞𝑧) 𝑓(𝑞𝑧)

. Bottom row: Reconstruction from  = . The first column corresponds to scattering 𝑓(𝑞𝑥, 𝑞𝑦) 𝑓(𝑞𝑧) 𝑓(𝑞𝑥)
perpendicular to the z-axis (which is comparable to the experimental scattering profile. The second 
column corresponds to scattering perpendicular to the x-axis, and the third column corresponds to 
scattering perpendicular to the x-axis.
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S6. Discussion/Reference Figure Regarding Field Superposition Order

The different ways to combine the two level-cut random fields are demonstrated in Figure S11. 
Because the crystalline domains are at a lower volume fraction than the hydrophilic volume 
fraction, the crystalline domains are more significantly affected in shape and size when the regions 
of intersection are assigned to the hydrophilic phase (Figure S11c). In contrast, because the 
hydrophilic domains are more plentiful than the crystalline domains, assigning the intersection 
regions to the crystalline phase minimally affects the hydrophilic domains’ structure (Figure 
S11b). For this reason, in this work, we assign the intersection regions to the crystalline phase as 
in Figure S11b.

Figure S11: 2D slices of small portions of one NafionTM reconstruction (64x64nm window) using 
random fields to demonstrate how the crystalline and hydrophilic level-cut fields are combined to 
create the final structure. In each of a, b, and c, the red regions represent amorphous domains, the 
blue regions represent hydrophilic domains, and yellow regions represent crystalline domains. In a, 
the regions of intersection between the hydrophilic and crystalline domains are highlighted in green. 
In b, these regions of intersection are assigned to the crystalline phase (yellow), while in c, the regions 
of intersection are assigned to the hydrophilic domains (blue). 
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