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1. FMM Material Functions 

The material functions of the fractional Maxwell model (FMM) all exhibit two power law regions. The behavior 

in the short-time / high-frequency limit is characterized by a power law with the lower of the two exponents, 𝛽, 

while the behavior in the long-time / low-frequency limit is described by a power law with the higher of the two 

exponents, 𝛼. The equations for some of the material functions, their limiting behavior and the intersection points 

of the two limiting power laws are given in Table S1 and shown in Fig. S1. 

 

Fig. S1:  FMM material functions plotted together in one graph. In this example, 𝛼 = 0.75, 𝛽 = 0.25, 

𝕍 = 1 Pa s0.75, 𝔾 = 1 Pa s0.25. To make them comparable to the material functions in the time 

domain, the frequency-dependent moduli are plotted as functions of 𝜔−1. All material functions 

show 𝛼-scaling for long times (low frequencies) and 𝛽-scaling for short times (high frequencies). 

The empty circles indicate the interception point of the limiting power laws of each material 

function. 
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Tab. S1  All equations for the material functions of the Fractional Maxwell Model (FMM). All material 

functions scale as 𝛼 or 𝛽-power laws in the limit. The intersection of the two limiting power 

laws are given by (x-intersection, y-intersection). 

Material Function 𝛼-scaling 𝛽-scaling x-intersection y- intersection 

𝐺(𝑡) = 𝔾𝑡−𝛽𝐸𝛼−𝛽,1−𝛽 (−
𝔾

𝕍
𝑡𝛼−𝛽)  

𝐺(𝑡 → ∞)
≈ 𝕍(1 − 𝛼)𝑡−𝛼 

𝐺(𝑡 → 0)

≈ 𝔾 (1 − 𝛽)𝑡−𝛽 (
𝕍(1 − 𝛼)

𝔾(1 − 𝛽)
)

1
𝛼−𝛽

 (
[𝔾(1 − 𝛽)]𝛼

[𝕍(1 − 𝛼)]𝛽
)

1
𝛼−𝛽

 

𝐺′(𝜔) =
(𝔾𝜔𝛽)

2
⋅𝕍𝜔𝛼 𝑐𝑜𝑠(𝛼𝜋 2⁄ )+(𝕍𝜔𝛼)2⋅𝔾𝜔𝛽 𝑐𝑜𝑠(𝛽𝜋 2⁄ ) 

(𝕍𝜔𝛼)2+(𝔾𝜔𝛽)
2

+2𝕍𝜔𝛼⋅𝔾𝜔𝛽 𝑐𝑜𝑠((𝛼−𝛽)𝜋 2⁄ ) 
  

𝐺′(𝜔 → 0)
≈ 𝕍 cos(𝛼𝜋 2⁄ ) 𝜔𝛼 

𝐺′(𝜔 → ∞)

≈ 𝔾 cos(𝛽𝜋 2⁄ )𝜔𝛽 (
𝔾 cos(𝛽𝜋 2⁄ )

𝕍 cos(𝛼𝜋 2⁄ )
)

1
𝛼−𝛽

 (
[𝔾 cos(𝛽𝜋 2⁄ )]𝛼

[𝕍 cos(𝛼𝜋 2⁄ )]𝛽
)

1
𝛼−𝛽

 

𝐺′′(𝜔) =
(𝔾𝜔𝛽)

2
⋅𝕍𝜔𝛼 sin(𝛼𝜋 2⁄ )+(𝕍𝜔𝛼)2⋅𝔾𝜔𝛽 𝑠𝑖𝑛(𝛽𝜋 2⁄ ) 

(𝕍𝜔𝛼)2+(𝔾𝜔𝛽)
2

+2𝕍𝜔𝛼⋅𝔾𝜔𝛽 𝑐𝑜𝑠((𝛼−𝛽)𝜋 2⁄ ) 
  

𝐺′′(𝜔 → 0)
≈ 𝕍 sin(𝛼𝜋 2⁄ ) 𝜔𝛼 

𝐺′′(𝜔 → ∞)

≈ 𝔾 sin(𝛽𝜋 2⁄ )𝜔𝛽  (
𝔾 sin(𝛽𝜋 2⁄ )

𝕍 sin(𝛼𝜋 2⁄ )
)

1
𝛼−𝛽

 (
[𝔾 sin(𝛽𝜋 2⁄ )]𝛼

[𝕍 sin(𝛼𝜋 2⁄ )]𝛽
)

1
𝛼−𝛽

 

|𝐺∗(𝜔)| =
𝕍𝔾𝜔𝛼+𝛽 

√(𝕍𝜔𝛼)2+(𝔾𝜔𝛽)
2

+2𝕍𝜔𝛼⋅𝔾𝜔𝛽 𝑐𝑜𝑠((𝛼−𝛽)𝜋 2⁄ ) 

  
|𝐺∗(𝜔 → 0)|
≈ 𝕍𝜔𝛼 

|𝐺∗(𝜔 → ∞)|

≈ 𝔾𝜔𝛽 (
𝔾

𝕍
)

1
𝛼−𝛽

 (
𝔾𝛼

𝕍𝛽
)

1
𝛼−𝛽

 

𝐻(𝜏) =
1

𝜋
𝜏−𝛽 𝕍𝔾2 𝑠𝑖𝑛(𝜋𝛼)𝜏𝛼−𝛽+𝕍2𝔾 𝑠𝑖𝑛(𝜋𝛽)

𝔾2𝜏2(𝛼−𝛽)+2𝕍𝔾𝜏𝛼−𝛽 𝑐𝑜𝑠[𝜋(𝛼−𝛽)]+𝕍2
  

𝐻(𝜏 → ∞)

≈
𝕍 sin(𝜋𝛼)

𝜋
𝜏−𝛼 

𝐻(𝜏 → 0)

≈
𝔾 sin(𝜋𝛽)

𝜋
𝜏−𝛽 (

𝕍 sin(𝜋𝛼)

𝔾 sin(𝜋𝛽)
)

1
𝛼−𝛽

 (
[𝔾 sin(𝜋𝛽)]𝛼𝜋𝛽

[𝕍 sin(𝜋𝛼)]𝛽𝜋𝛼
)

1
𝛼−𝛽

 

 

2. Estimation of critical concentrations 

The transition from dilute to semi-dilute non-entangled takes place at the overlap concentration 𝑐∗, which 

is defined as the concentration, where polymer coils start to overlap. It is given by 

 

𝑐∗ =
3𝑀𝑤

4𝜋𝑁𝐴𝑅𝑔
3

  , (S1) 

where 𝑅𝑔 is the radius of gyration and 𝑁𝐴 is Avogadro’s constant. Using an empirical relation between 𝑅𝑔 

and 𝑀𝑤  from literature for PEO:1 

 𝑅𝑔 = 0.215𝑀𝑤
0.583  Å , (S2) 

𝑐∗  can be estimated for the molecular weights employed in this paper. The onset of the semi-dilute 

entangled regime occurs beyond the critical entanglement concentration, 𝑐𝑒 . At concentrations above 𝑐𝑒 , 

the dynamics of the polymer solution are governed by entanglement effects. For 𝑐∗ < 𝑐 < 𝑐𝑒 , the solutions 

are semi-dilute but not entangled.2,3 The critical entanglement concentration can be approximated as 𝑐𝑒 ≈

10𝑐∗ for neutral polymers in good solvents.4 The onset of the concentrated regime (iv) is given by another 

critical concentration, 𝑐‡.At 𝑐‡, the excluded-volume repulsions are cancelled out by screening.5 𝑐‡ is not 

easy to predict theoretically. Ebagninin et al. determined the values of 𝑐𝑒  and 𝑐‡ experimentally for PEO 

of similar molecular weight as used in our work.6 The experimental values as well as the predicted values 
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are tabulated in Table S2. No experimental data for 2000 kDa PEO are available. Since 𝑐𝑒  and 𝑐‡ are often 

given as multiples of 𝑐∗  and since we can safely assume that 2000 kDa PEO will have intermediate 

properties between 1000 and 4000 kDa PEO, we calculate the missing 𝑐𝑒  value for 2000 kDa according 

to 

 
𝑐𝑒,2000 =

1

2
[(𝑐𝑒,1000 𝑐1000

∗⁄ ) + (𝑐𝑒,4000 𝑐4000
∗⁄ )] ⋅ 𝑐2000

∗  . (S3) 

𝑐2000
‡

 is determined in an analogous fashion. According to these considerations, the PEO solutions used 

in this work fall either in the semi-dilute entangled regime or in the concentrated regime. An overview of 

the samples is shown in Tab. 1 in the main text. 

 

Table S2: Values for the critical concentrations 𝑐∗, 𝑐𝑒 and 𝑐‡. Theoretical values were calculated using 

equations (S1) and (S2) as well as the assumption that 𝑐𝑒 ≈ 10𝑐∗. Experimental values are 

taken from ref 6. The two values marked with * were determined using the procedure shown in 

equation (S3). 

 Theoretical Experimental 

Mw [kDa] 𝑐∗ [wt%] 𝑐𝑒 [wt%] 𝑐𝑒 [wt%] 𝑐‡ [wt%] 

1000 0.13 1.28 1.6 4.9 

2000 0.08 0.76 1.0* 3.0* 

4000 0.05 0.45 0.65 1.8 

 

3. Amplitude Sweeps 

Amplitude sweeps were performed to determine the extension of the linear viscoelastic regime by varying the 

strain amplitude of oscillation 0 between 0.1 and 20 rad/s at a constant frequency of 6.28 rad/s. The results are 

shown in Fig. S2. The linear viscoelastic regime extends to values clearly beyond 20%. For the subsequent 

frequency sweeps, the strain amplitude was kept fixed at 0 = 5%. 



5 
 

 

Fig. S2:  Amplitude sweeps for solutions of A) 1000 kDa, B) 2000 kDa and C) 4000 kDa PEO. Filled and 

open symbols denote 𝐺′  and 𝐺′′ , respectively. The vertical dashed lines indicate the strain 

amplitude chosen for the subsequent frequency sweeps. 

 

4. Frequency Sweeps 

Frequency sweeps were performed on all PEO solutions at a constant strain amplitude of 5%. For each PEO 

solution, three separate samples were prepared containing 192, 109 and 69 nm polystyrene particles, respectively. 

The particles have a negligible impact on the rheological measurements. For one sample, 4000 kDa PEO, 2 wt%, 

the frequency sweep results from the three particle-containing samples and one sample without particles are shown 

in Fig. S3. Very small differences between the four measurements can be seen at low frequencies. 

 

Fig. S3 Frequency sweep results for a PEO solution with three differently sized polystyrene particles 

and without particles. 

The fractional Maxwell model (FMM) was fitted to all frequency sweep data. For the 1000 and 2000 kDa samples, 

the 𝛼-parameter was fixed to 1. In this case, the corresponding spring-pot reduces to a regular dashpot and 𝕍 

becomes 𝜂 , which is a regular viscosity with units of Pa s. For some samples at lower concentrations, 𝐺′ 

approaches a plateau at low frequencies. This is an instrumental artefact that can be attributed to phase angle 
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uncertainties.7 For samples, 1000 kDa, 2 wt%, 2000 kDa 2 wt% and 4000 kDa, 1 wt%, only data points for 

frequencies above 1 rad/s were considered for the fit. All frequency sweep data and fits are shown in Fig. S4. For 

the GMM, usually at least 4 modes are necessary to yield a better description than the FMM. The advantage of the 

FMM is particularly strong for samples at high Mw and high concentrations, where 𝐺′  and 𝐺′′  exhibit a low 

frequency dependence. The fit residuals of the 3 wt% of 1000, 2000 and 4000 kDa are shown in Fig. S5. 

 

 

Fig. S4:  Frequency sweep data for all samples fitted with the FML (1000 and 2000 kDa) and the FMM 

(4000 kDa). Full lines indicate 𝐺′ and broken lines indicate 𝐺′′. 



7 
 

 

Fig. S5: Fit residuals for the 3 wt% solutions of A) 1000 kDa, B) 2000 kDa and C) 4000 kDa PEO. 

 

5. Zero-shear viscosity 

The zero-shear viscosity is fully defined by the relaxation modulus:8 

 

𝜂0 = ∫ d𝑡 𝐺(𝑡)

∞

0

 . (S4) 

For this discussion, the relaxation modulus of the FMM may be approximated by two power-laws 

(neglecting the transition from one to the other) 

 

𝐺(𝑡) = {
𝐺FMM𝑡−𝛽  for 𝑡 ≤ 𝜏FMM

𝐺FMM𝑡−𝛼 for 𝑡 > 𝜏FMM
 , (S5) 

where 

 
𝜏𝐹𝑀𝑀 = [(1 − 𝛼) 𝕍 𝔾⁄ ]1 (𝛼−𝛽)⁄  (S6) 

is the time, where the two power-laws intersect and 

 
𝐺FMM = 𝔾[(1 − 𝛼) 𝕍 𝔾⁄ ]𝛽 (𝛽−𝛼)⁄  (S7) 

is the value of 𝐺 at 𝑡 = 𝜏FMM. A simple approximation as such can be used to explore the properties of the 

zero-shear viscosity of the FMM: 

 

𝜂0 = ∫ d𝑡 𝐺(𝑡)

𝜏𝐹𝑀𝑀

0

+ ∫ d𝑡 𝐺(𝑡)

∞

𝜏𝐹𝑀𝑀

 , (S8) 

which rearranges into 
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𝜂0

𝐺FMM𝜏FMM

= ∫
d𝑡

𝜏FMM

(
𝑡

𝜏FMM

)
−𝛽

𝜏FMM

0

+ ∫
d𝑡

𝜏FMM

(
𝑡

𝜏FMM

)
−𝛼

∞

𝜏FMM

=
1

1 − 𝛽
+

1

1 − 𝛼
lim

(𝑡 𝜏𝐹𝑀𝑀⁄ )→∞
(

𝑡

𝜏𝐹𝑀𝑀

)
1−𝛼

− 1 = lim
(𝑡 𝜏𝐹𝑀𝑀⁄ )→∞

(
𝑡

𝜏𝐹𝑀𝑀

)
1−𝛼

 . 

(S9) 

According to equation (S9), the zero-shear viscosity of the FMM diverges for values of 𝛼 ≠ 1. Such 

behaviour is expected for materials at the gel point,9–11 but not for solutions of non-permanently 

crosslinked polymers. Steady shear experiments were performed for one of the three sets of PEO solutions 

as shown in Fig. S6. All measured apparent viscosities approach a plateau value at low shear rates 

indicating the presence of a plateau modulus 𝜂0. The exception is the 4 wt% solution of 4000 kDa PEO, 

where in the experimental shear rate range, no true plateau can be seen, but can be presumed to appear at 

lower shear rates. The data are well described by the Cross model: 

 

𝜂 = 𝜂∞ +
𝜂0 − 𝜂∞

1 + (𝑘𝛾̇)𝑚
 (S10) 

where 𝜂∞ is the infinite shear viscosity, 𝑘 is a characteristic crossover time and 𝑚 describes the sharpness 

or cooperativity of the shear-thinning transition. Since the infinite shear viscosity plateau is not seen within 

the range of our data, 𝜂∞ is kept fixed at 0. 

 

Fig. S6:  Steady shear experiments for one of the three sets of PEO solutions: A) 1000 kDa, B) 2000 kDa 

and C) 4000 kDa. The determined apparent viscosities approach a plateau at low shear rates 

which corresponds to the zero-shear viscosity. The data were fitted with the Cross model (black 

lines). 
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6. Determination of Shift Factors 

The horizontal shift factor, 𝑎𝑐 is determined by aligning tan 𝛿 = 𝐺′′ 𝐺′⁄  of the curve that is to be shifted with the 

reference curve. For a given shift factor, 𝑎𝑐, the overlapping frequency range is determined. Only shift factors for 

which the number of overlapping data points is larger or equal to 2 are considered. In the overlapping frequency 

range, cubic splines (denoted 𝑆(𝑥)) are used to interpolate both curves (N = 100 points). The final minimized 

quantity is 

 

𝐸 =
1

100
∑[𝑆(tan 𝛿)𝑖 − 𝑆(tan 𝛿ref)𝑖]

2

100

𝑖=1

 . (S11) 

After horizontal shifting is completed, vertical shifting is performed. 𝐺′ and 𝐺′′ are shifted in horizontal direction 

with the ideal value of 𝑎𝑐. In the overlapping frequency range, cubic splines are used to interpolate 𝐺′, 𝐺′′, 𝐺ref
′  

and 𝐺ref
′′  (N = 100 points). The final minimized quantity is given by 

 

𝐸̅ =
1

100
∑[𝑆(𝐺′)𝑖 − 𝑆(𝐺′ref)𝑖]

2 + [𝑆(𝐺′′)𝑖 − 𝑆(𝐺′′ref)𝑖]
2

100

𝑖=0

 . (S12) 

The shifted tan 𝛿 and 𝐺′, 𝐺′′ curves for the PS-109 containing samples are shown in the main text in Figure 7. The 

shifted curves for the remaining two samples sets are shown in Figures S7 and S8. 
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Fig. S7:  Time-concentration superposition results for the PS-69-containing samples. Firstly, horizontal 

shifts are obtained by shifting the loss tangents (left column). Secondly, vertical shifts are 

obtained by shifting 𝐺′, 𝐺′′ (right column). A)-B) 1000 kDa, C)-D) 2000 kDa, E)-F) 4000 kDa. 
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Fig. S8:  Time-concentration superposition results for the PS-192-containing samples. Firstly, horizontal 

shifts are obtained by shifting the loss tangents (left column). Secondly, vertical shifts are 

obtained by shifting 𝐺′, 𝐺′′ (right column). A)-B) 1000 kDa, C)-D) 2000 kDa, E)-F) 4000 kDa. 
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