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Hamiltonian of the systems

The full Hamiltonian, H, of the simulated systems is defined as follows:
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where n is the number of binding ligands, A is the amplitude of the oscillating surface potential,
ε is the distance between the surface potential wells, {xi, yi} is the i ’th ligand position, L is the
number of linkers of the simulated particle, kj is the force constant of the linker, rj is the length of
the linker, and εeq,j is the equilibrium length of the linker.
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Examples of mean-square deviation curves

Figure S1: A. Ten mean-square deviation (MSD) curves collected over 30,000 independent simula-
tions of a particle with N = 5, n = 1, k = 1, ε/εeq = 1.0, KB = 3.0 di!using on a 1D line. MSD
data were collected over the entire simulation run, but data from the first 50,000 sweeps of each
replica (equilibration stage) were omitted for line fitting. B. Three selected MSD curves obtained
from the same system, displaying fitted lines and their slopes during the production phase of the
simulation. The di!usion rate for each curve was calculated by dividing the slope by a scaling
factor based on the dimensionality of the problem (2 for 1D or 4 for 2D) and multiplying by an
arbitrary constant (1000). The di!usion rates from individual MSD curves were averaged, and their
standard deviation represents the error estimate. Throughout the main text, di!usion rates are
reported relative to free di!usion calculated using the same method. The line fitting utilized the
Rust linreg crate v0.2.0 (crates.io/crates/linreg), while the mean and standard deviation calcula-
tions were conducted using the statistical crate v1.0.0 (crates.io/crates/statistical).

Figure S2: Several randomly selected mean-square deviation (MSD) curves for various diverse
systems. Each MSD curve is derived from data collected across 3000 independent simulations.
Although some systems exhibit subdi!usive behavior during the equilibration phase, di!usion is
always normal during the production phase. The reported di!usion coe”cients are calculated solely
from the production segment of the MSD curves.
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Simplified look at di!usion in systems with particles composed of 10
ligands

Figure S3: The di!usion of particles composed of ten ligands (N = 10) with varying valency,
n, ranging from 1 to 10, and three di!erent cumulative ligand a”nities, KB. The ligands were
connected by linkers modeled as harmonic bonds with a force constant of k = 1, and the distance
between potential wells on the surface matched the equilibrium lengths of these linkers. This chart
presents three one-dimensional slices of the two-dimensional data for the same systems shown in
Figure 3.
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Di!usion in systems not displaying pattern matching

Figure S4: Dependence of the relative di!usion rate, D/D0 on the valency, n, and the cumulative
ligand a”nity, KB. Simulations were performed using particles consisting of either N = 5 (two
columns on the left) or N = 10 ligands (column on the right) connected by flexible (k = 1; top row),
intermediate (k = 10; middle row), or sti! (k = 50; bottom row) linkers. The distance between
the surface potential wells, ε/εeq, was set to 0.7 (in contrast to ε/εeq of 1.0 in Figure 3). Di!usion
of particles with N = 5 was calculated in both 1D (linear chain) and 2D (star) geometries, while
di!usion of particles with N = 10 was examined only in the 1D case (linear chain). Note that for
sti#y linked ligands (k = 50), the 1D relative di!usion rate increases exponentially with increasing
valency. This behavior is in contrast to what was observed in Figure 3 and it is the consequence of
the wells distances not matching the length of the linkers (ε/εeq = 0.7). One simulation was run
for each integer n and each increment of 0.5 in KB.
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Detailed analysis of pattern matching

As mentioned in the main text, we observed the lowest di!usion rate for particles whose linkers
were slightly shorter than the distance between the surface potential wells. Specifically, the relative
di!usion rate, represented by D/D0, was found to be lower for systems with ε/εeq = 1.1 compared
to systems with ε/εeq = 1.0. This trend was consistently observed across a wider range of particles
with N ↓ {2 . . . 5} and k = 10 di!using on a line (1D), as depicted in Figure S5 A.
For further analysis, we focused on the simplest case of a two-binding ligand particle, which was

di!using on a line (1D). In this case, the unnormalized (absolute) mean di!usion rates D were
calculated as 0.176± 0.011 and 0.157± 0.011 arb.u. for ε/εeq = 1.0 and ε/εeq = 1.1, respectively.
To gain insights into the underlying mechanisms, we calculated the potential energy surfaces for
these two systems, considering the two degrees of freedom of the two-ligand particle, as depicted
in Figure S5 B. Both potential energy surfaces exhibited characteristic diagonally repeating local
minima. Surprisingly, as shown in S5 C, the potential energy barriers between these minima were
lower for the system with slower di!usion (ε/εeq = 1.1), suggesting that the observed di!erences in
di!usion rates were originating from entropic e!ects. Our hypothesis was that the faster di!usion
for ε/εeq = 1.0 was due to the presence of four distinct paths that the ligand could take to
transition from one local energy minimum to a neighboring minimum, as indicated by the white
arrows in Figure S5 B. In contrast, the potential energy surface for ε/εeq = 1.1 only presented two
energetically favorable paths that allowed the ligand to leave each minimum.
To test this hypothesis, we conducted additional simulations for each of the described systems

(with ε/εeq values of 1.0 and 1.1). In these simulations, we implemented a restriction to prevent the
ligands from entering specific regions of the configuration space, as indicated by the white circles
in S5 B. To achieve this, we applied a restraint in the following form:

ures =

{
↔ if ↗d ↓ D : d < 0.3

0 if ↘d ↓ D : d ≃ 0.3,
(S2)

where D is a set of distances between the ligands’ coordinates xi and xj and the centers of the
restricted areas, defined as

D =
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The applied restraint had a significant impact on the di!usion behavior of the particle with
ε/εeq = 1.0. By obstructing half of the energetically most favorable paths, the di!usion rate of the
particle was reduced by approximately 40% to 0.104 ± 0.008 arb.u. In contrast, the e!ect of the
restraint on the system with ε/εeq = 1.1 was milder. It led to a modest decrease in the di!usion
rate of about 16% to 0.132 ± 0.007 arb. u., as the particle already exhibited a preference for the
unblocked paths.
This showed that if the same number of paths was available for the particle to take, the dif-

fusion rates were consistent with the height of the potential energy barriers (i.e. lower potential
energy barriers between the minima led to higher di!usion rate) and that the originally observed
discrepancy was indeed introduced by entropic e!ects.
In the next two paragraphs, we attempt to provide an intuitive explanation for the existence of

4 or 2 energetically favorable paths. When the distance between the wells perfectly matched the
length of the linker (ε/εeq = 1.0) and both ligands of the particle resided in neighboring potential
wells, the linker would be in equilibrium, meaning there would be no tension in the linker. In such
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Figure S5: A. Dependence of 1D relative di!usion rate, D/D0, on the distance between the sur-
face potential wells, ε/εeq, for particles composed of varying number of ligands, N . All ligands
were binding (n = N) and all ligands were connected into a linear chain using linkers with a force
constant, k, of 10. One simulation was run for each each increment of 0.02 in ε/εeq. B. Slices of
potential energy surfaces for a particle composed of two intermediately linked (k = 10) binding lig-
ands in a system with ε/εeq = 1.0 (left column) or ε/εeq = 1.1 (right column). Potential energy is
shown as a function of the coordinates of the particle’s ligands. The white arrows show energetically
favorable paths the particle can take to move between neighbouring potential energy minima. In
the bottom row, the white circles show areas that the particle was restricted from in the restrained
simulations. In the lower right corner of each chart, we show the unnormalized di!usion rate calcu-
lated for this potential energy surface (in arb. u.). C. Potential energy profiles of the particle along
the identified paths between two neighbouring energy minima, calculated for ε/εeq = 1.0 and for
ε/εeq = 1.1. The energies were obtained from the analytically calculated potential energy surfaces
using the MEPSAnd script version 1.6 (available from bioweb.cbm.uam.es/software/MEPSAnd).

case, the particle’s di!usion could be initiated by either ligand moving in either direction, resulting
in the stretching or compressing of the linker. Thus, there were four possible ways for the particle
to leave the energy minimum, as depicted in the potential energy surface for ε/εeq = 1.0.
In contrast, if the linker was slightly shorter than the distance between the wells (ε/εeq = 1.1)

and both ligands of the particle were located in neighboring potential wells, the linker was already
slightly stretched, creating tension that forced the ligands closer together. Consequently, in such
scenario, the particle’s di!usion could not be initiated by either ligand moving away from the other,
as this would involve energetically unfavorable stretching of the already stretched linker. Instead,
the process of the particle leaving the energy minimum had to be triggered by either of the ligands
moving closer to the other, bringing the linker closer to equilibrium. Therefore, the number of
available paths is reduced to two, as illustrated in the potential energy surface for ε/εeq = 1.1.
A similar mechanism is likely to apply also to particles composed of a larger number of ligands,

which could explain the unexpected slowdown in di!usion at ε/εeq = 1.1.
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Binding free energy

We calculated the binding free energy for various one-dimensional systems. During the simulation
run, we collected the positions of each ligand along a virtual z-axis. This position was calculated
as

zi = sin

[
2ω

(
xi

ε
↑ 1

4

)]
, (S4)

where zi represents the z-axis position of ligand i, and the other variables and constants are defined
in Equation 1. A z-axis position was calculated and stored every 100 Monte Carlo sweeps (i.e.,
100N Monte Carlo steps, where N is the number of ligands in the particle) during the production
phase of the simulation. The simulation lengths were the same as described in the Methods section
of the main text.
A histogram with two bins, corresponding to the “bound” (z < 0) and “free” (z ≃ 0) states, was

constructed from the collected z-axis positions.
The classification of the entire particle as “bound” or “free” was based on the state of its ligands.

If all ligands were classified as “free”, the particle was also classified as “free”. In all other cases,
the particle was classified as “bound”. The free energy for each state was then calculated as
F = ↑ logW , where W is the number of samples in the corresponding bin. The binding free
energy, $FB, was calculated as Fbound↑Ffree. See Figure S6 A for graphical depiction of the states.
We calculated the binding free energy of various 5-ligand particles, for which the 1D di!usion

rates are presented in Figure 3. As shown in Figure S6 B, we found that the redistribution of the
cumulative ligand a”nity of the particle can a!ect the binding free energy. For particles with flexible
and intermediate linkers (k = 1 and k = 10), we observed that the binding free energy becomes
slightly less negative (indicating weaker binding) with increasing valency, n, of the particle. In
contrast, the binding free energy remains constant for particles with sti! linkers (k = 50).
To verify that the conclusions presented in the main text are not merely artifacts of the non-

constant binding free energy, we conducted simulations in which the binding a”nities of individual
ligands were carefully adjusted to maintain a constant binding free energy (see Table S1 for more
information about the adjustment). As shown in Figure S7, keeping the binding free energy constant
produces trends in di!usion rates that are consistent with those described in the main text (compare
with the 1D systems with k = 1 and k = 10 in Figure 3), although the rate of increase is slightly
lower, as expected. Consistent with previous results, the di!usion rate increases rapidly with
increasing valency for particles with flexible linkers (k = 1) and more slowly for particles with
intermediate linkers (k = 10), due to the pattern matching e!ect described in the main text.
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Figure S6: A. Sine wave defining both the surface potential and the virtual surface of the one-
dimensional systems in our model, with illustrations of the “free” and “bound” states of a ligand.
The figure also shows a three-ligand particle with two “free” ligands and one “bound” ligand.
A ligand is considered “free” if its z-axis position is 0.0 or higher; otherwise, it is considered
“bound”. The particle is classified as “free” only if all its ligands are “free”. B. Dependence of
the binding free energy, $FB, of the particles on the valency, n, and the cumulative ligand a”nity,
KB. Simulations were performed on particles consisting of N = 5 ligands connected by flexible
(k = 1; left), intermediate (k = 10; middle), or sti! (k = 50; right) linkers. The particles di!used
in one dimension, with the distance between the surface potential wells matching the equilibrium
linker lengths (ε/εeq). One simulation was run for each integer value of n and each increment of
0.5 in KB. The code used to perform the simulations with free energy calculations is available from
doi.org/10.5281/zenodo.13771494.
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Figure S7: Left column. The dependence of the relative di!usion rate on the valency, n, and the
“base” cumulative ligand a”nity, KBbase

, of the particle. The actual cumulative ligand a”nity, KB,
varied slightly for di!erent valencies to ensure a constant binding free energy, $FB (see Table S1 for
information about the actual ligand a”nities used). Data for particles with flexible linkers (k = 1)
are presented in the top row, while data for particles with intermediate linkers (k = 10) are shown
in the bottom row. Compare these results with the 1D, k = 1 and k = 10 charts in Figure 3. Right
column. Binding free energy calculated for the corresponding systems. The binding free energy
remained approximately constant even as valency increased, achieved by redistributing additional
binding a”nity among the binding ligands of the particle as valency increased (see Table S1).
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Table S1: Cumulative ligand a”nities, KB, distributed between the ligands of various particles to
achieve a constant binding free energy (see results in Figure S7).

k KBbase
n KB k KBbase

n KB

1.0 0.5

1 0.5

1.0 5.0

1 5.0
2 0.8 2 5.3
3 1.1 3 5.6
4 1.1 4 5.9
5 1.1 5 6.2

1.0 1.0

1 1.0

1.0 5.5

1 5.5
2 1.3 2 5.8
3 1.6 3 6.1
4 1.6 4 6.4
5 1.6 5 6.7

1.0 1.5

1 1.5

1.0 6.0

1 6.0
2 1.8 2 6.3
3 2.1 3 6.6
4 2.1 4 6.9
5 2.1 5 7.2

1.0 2.0

1 2.0

1.0 6.5

1 6.5
2 2.3 2 6.8
3 2.6 3 7.1
4 2.6 4 7.4
5 2.6 5 7.7

1.0 2.5

1 2.5

1.0 7.0

1 7.0
2 2.8 2 7.3
3 3.1 3 7.6
4 3.1 4 7.9
5 3.3 5 8.2

1.0 3.0

1 3.0

1.0 7.5

1 7.5
2 3.3 2 7.8
3 3.6 3 8.1
4 3.6 4 8.4
5 3.8 5 8.7

1.0 3.5

1 3.5

1.0 8.0

1 8.0
2 3.8 2 8.3
3 4.1 3 8.6
4 4.4 4 8.9
5 4.7 5 9.2

1.0 4.0

1 4.0

1.0 8.5

1 8.5
2 4.3 2 8.8
3 4.6 3 9.1
4 4.9 4 9.4
5 5.2 5 9.7

1.0 4.5

1 4.5

1.0 9.0

1 9.0
2 4.8 2 9.3
3 5.1 3 9.6
4 5.4 4 9.9
5 5.7 5 10.2
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Table continues
k KBbase

n KB k KBbase
n KB

10.0 0.5

1 0.5

10.0 5.0

1 5.0
2 0.7 2 5.2
3 0.9 3 5.4
4 0.8 4 5.6
5 0.9 5 5.8

10.0 1.0

1 1.0

10.0 5.5

1 5.5
2 1.2 2 5.7
3 1.4 3 5.9
4 1.3 4 6.1
5 1.4 5 6.3

10.0 1.5

1 1.5

10.0 6.0

1 6.0
2 1.7 2 6.2
3 1.9 3 6.4
4 1.8 4 6.6
5 1.9 5 6.8

10.0 2.0

1 2.0

10.0 6.5

1 6.5
2 2.2 2 6.7
3 2.4 3 6.9
4 2.5 4 7.1
5 2.6 5 7.3

10.0 2.5

1 2.5

10.0 7.0

1 7.0
2 2.7 2 7.2
3 2.9 3 7.4
4 3.0 4 7.6
5 3.1 5 7.8

10.0 3.0

1 3.0

10.0 7.5

1 7.5
2 3.2 2 7.7
3 3.4 3 7.9
4 3.5 4 8.1
5 3.6 5 8.3

10.0 3.5

1 3.5

10.0 8.0

1 8.0
2 3.7 2 8.2
3 3.9 3 8.4
4 4.1 4 8.6
5 4.3 5 8.8

10.0 4.0

1 4.0

10.0 8.5

1 8.5
2 4.2 2 8.7
3 4.4 3 8.9
4 4.6 4 9.1
5 4.8 5 9.3

10.0 4.5

1 4.5

10.0 9.0

1 9.0
2 4.7 2 9.2
3 4.9 3 9.4
4 5.1 4 9.6
5 5.3 5 9.8
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E!ect of ligand distribution on di!usion

Figure S8: Dependence of the relative di!usion rate, D/D0, on the valency, n, and the cumulative
ligand a”nity, KB, for N = 5 particles with di!erent geometries di!using on a plane (2D). The
left column shows results for particles with ligands arranged in a linear chain, while the right
column shows results for alternative star-shaped particles, where the central ligand always interacted
with the surface potential (unless n = 0). Note that for the standard star-shaped particles, the
central ligand was always non-binding, unless n = N . See Table S2 for a detailed depiction of
the geometries used in these simulations. The simulated particles consisted of flexibly (k = 1; top
row), intermediately (k = 10; middle row), or sti#y linked ligands (k = 50; bottom row), and the
distance between the surface potential wells matched the equilibrium linker lengths. Note that the
overall trends in the di!usion rates matched the trends described in the main text for the standard
distributions of the binding ligands. One simulation was run for each integer n and each increment
of 0.5 in KB.
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Table S2: Distributions of ligands used for 2D simulations presented in Figure S8. corresponds
to a ligand that interacts with the surface potential (binds to receptors), while corresponds to
a non-binding ligand.

linear chain alternative star-shaped

n = 0

n = 1

n = 2

n = 3

n = 4

n = 5
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Di!usion with a chain move

Figure S9: Di!usion with a chain move. The chain move involved moving all connected ligands
in the same direction by the same distance. The maximal displacement was 0.1εeq, the same as
for the standard translation move. A chain move was attempted on average once every sweep
(once every N Monte Carlo steps), replacing a standard translation move of a randomly selected
ligand. For particles with 5 ligands (N = 5), which are presented here, this resulted in 20% of the
attempted moves being chain moves. The code used to perform the simulations with the chain move
is available from doi.org/10.5281/zenodo.10877722. A. Dependence of the relative di!usion rate,
D/D0, on the valency, n, and the cumulative ligand a”nity. The ligands were connected either
with flexible (k = 1; top row) or sti! linkers (k = 50; bottom row). The distance between the
surface potential wells matched the equilibrium linker lengths. Di!usion was calculated for both
1D (linear chain; left column) and 2D (star-shaped; right column) geometries. One simulation was
run for each integer n and each increment of 0.5 in KB. Compare with relative di!usion rates in
the top and bottom rows of Figure 3 for the N = 5 case. B. Dependence of the relative di!usion
rate, D/D0, on the cumulative ligand a”nity, KB, and the distance between the potential wells,
ε/εeq. The ligands, all of which were binding, were arranged either as a linear chain (1D; left) or as
a star (2D; right) and were connected with sti! linkers (k = 50). One simulation was run for each
increment of 0.5 in KB and each increment of 0.1 in ε/εeq. Compare with relative di!usion rates
in the bottom row of Figure 4. C. Comparison of absolute di!usion rates calculated for several
systems without the chain move (red) and with the chain move (blue). The linkers were flexible
(k = 1) and the cumulative ligand a”nity, KB, was 5.0. Di!usion was calculated for both 1D (left)
and 2D (right) geometries. Other parameters are described in panel A.
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Di!usion on step surface potential

Figure S10: A. 1D sine surface potential used in the main text as given by the equation in Figure 1
(in black) compared to 1D step surface potential used in the panel B and given by Equation (S5) (in
red). B. Dependence of the 1D relative di!usion rate, D/D0, on the valency, n, and the cumulative
ligand a”nity, KB, for N = 5 particles connected by flexible (k = 1; left column), intermediate
(k = 10; middle column), or sti! (k = 50; right column) bonds. The particles di!used on a step
surface potential with wells distances of 1 (top row), 2 (second row), 5 (third row), or 10 (last
row). One simulation was run for each integer n and KB. Increasing wells distance expands step
widths. For ε/εeq = 1, particle behavior mirrored that on a sine surface potential with equivalent
wells distance (see Figure 3). Generally, trends remained consistent with the sine surface potential,
with greater valency increasing di!usion. Some deviations occurred due to pattern matching. At
ε/εeq = 10, valency stopped influencing di!usion across all bond sti!nesses, as wide energy barriers
required all particle ligands to cross each barrier simultaneously, making the di!usion dependent
almost entirely on the cumulative ligand a”nity of the particle. The code used to perform the
simulations with step surface potential is available from doi.org/10.5281/zenodo.10054283.

ui = A sgn

{
sin
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ε
↑ 1

4

)]
(S5)

16

https://doi.org/10.5281/zenodo.10054283

