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S1. General Information and Materials. All the reagents for synthesis were purchased
from Sigma-Aldrich Chemical Co. and used without further purification. PerkinElmer Lamda-
25 UV-vis spectrophotometer was used for the measurement of the absorption spectra in the
wavelength range of 250—800 nm, using 10 mm path-length quartz cuvettes. Horiba
Fluoromax-4 spectrofluorometer was employed for fluorescence measurements keeping a slit
width of 5 nm at 298 K, using 10 mm path-length quartz cuvettes. All the mass spectra were
recorded using a Waters Q-ToF Premier mass spectrometer. Bruker Advance 600 MHz
instrument was used to record Nuclear magnetic resonance (NMR) spectra, where the chemical
shifts were recorded in parts per million (ppm) scale. To describe the spin multiplicities in the
'H NMR spectra following abbreviations have been used: singlet: s; doublet: d; triplet: t,
quartet: q, and multiplet: m. The morphology of the aggregated species was investigated by
using FESEM imaging studies by the drop (1 mM) cast method on glass plates covered with
Al-foil using Gemini 300 FESEM (Carl Zeiss) and Sigma 300 FESEM (10000KX).

S2. Synthesis of TRI-NH,. TRI-NH, was synthesized using the procedure described in
previous literature.! Benzene-1,3,5-tricarboxylic acid (1g) was placed in a 50 mL round-
bottomed flask and dissolved in ethanol (EtOH) (30 mL). A few drops of concentrated H,SO4
were added to the flask. The reaction was refluxed at 74 C for 48 hours. The precipitates were
separated by filtration and washed with EtOH (30 mL). The obtained white crystalline product
(500 mg) was dried and taken in a round-bottomed flask for further reaction with an excess
amount of hydrazine hydrate (NH,NH,.H,0). The reaction was refluxed at 74 C for 24 hours.
The white precipitates were separated by filtration washed with EtOH (30 mL) and vacuum
dried to obtain TRI-NH,. '"H NMR [600 MHz, DMSO-ds, & (ppm)]: 3%[9.85 (s, 1H), 8.32 (s, J
= 2.2 Hz, 1H), 4.58 (s, 2H)]. 3C NMR [151 MHz, DMSO-d6, & (ppm)] 165.47x3, 134.31x3,
128.51x%3.

S3. Synthesis of Probe TRI-QUI. TRI-NH, (200 mg, 0.793 mmol, 1 equiv.) was placed
in a 50 mL round-bottomed flask and dissolved in ethanol (EtOH) (10 mL). 8-quinoline
carboxaldehyde (436 mg, 2.80 mmol, 3.5 equiv.) was added and the reaction was refluxed at
74 C for 24 hours. The precipitates were separated by filtration and washed with EtOH (30
mL). The obtained white amorphous product was further vacuum-dried and isolated as
compound TRI-QUI. It was further crystallized from DMSO and a suitable single crystal was
isolated for SC-XRD analysis. Calculated yield: 95%. 'H NMR [600 MHz, DMSO-d, 8
(ppm)]: 3x[12.49 (s, 1H), 9.88 (s, 1H), 9.03 (d, J = 3.9 Hz, 1H), 8.85 (s, 1H), 8.51-8.45 (m,
2H), 8.15(d,J=7.8 Hz, 1H), 7.78 (t,J = 7.5 Hz, 1H), 7.67 (dd, J = 8.2, 4.0 Hz, 1H)]. *C NMR
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[151 MHz, DMSO-d6, 6 (ppm)]: 3x[162.41, 150.97, 146.01, 145.90, 137.24, 134.47, 131.50,
130.79, 130.62, 128.57, 127.13, 126.32, 122.47]. ESI-MS (positive mode, m/z) calculated for
C39H27NgO;5: 669.2237, found: 670.2327 [M + H']. Empirical formula C3;9Hy9NgO4, Mw:
687.71, T = 297 K, triclinic, space group: P-1, a = 8.3334 (12) A, b =11.9948 (17) A, ¢ =
16.823 (2) A, a=94.916 (4)°, B =99.085 (4)°, y = 94.038(4)°, V = 1648.3 (4) A3, Z =2, Dx
(g cm—3) = 1.386, F(000) = 716.0, total no. of reflections/no. of independent reflections/no. of
observed reflections = 38298/5791/3398, R1, 1 > 20(I) = 0.0824 (3398), wR2, I > 26(]) =
0.2981 (5791), GOF (F2) =1.107. CCDC:: 2363554.

S4. Synthesis of Probe TRI-NAP. TRI-NAP was synthesized with a similar procedure
as to that of TRI-QUI, where, TRI-NH, (200 mg, 0.793 mmol, 1 equiv.) was placed in a 50
mL round-bottomed flask and dissolved in N,N-Dimethylformamide (DMF) (10 mL). 1-
naphthaldehyde (436 mg, 2.80 mmol, 3.5 equiv.) was added and the reaction was refluxed at
60 C for 24 hours. The clear yellow solution was poured into ice-cold water and the white
precipitates obtained were separated by filtration and washed with distilled water (30 mL). The
obtained white powder product was further vacuum-dried and isolated as compound TRI-
NAP. Calculated yield: 80%. 'H NMR [600 MHz, DMSO-ds, 8 (ppm)]: 3x[12.36 (s, 1H), 9.22
(s, IH), 8.88 (d, J = 8.4 Hz, 1H), 8.80 (s, 1H), 8.07 (dd, J = 14.1, 8.6 Hz, 2H), 8.02 (d, J = 7.1
Hz, 1H), 7.75 - 7.70 (m, 1H), 7.65 (m, J = 12.0, 7.9 Hz, 2H) 3C NMR [151 MHz, DMSO-dg,
d (ppm)]: 3x[162.51, 148.90, 134.77, 134.04, 131.30, 130.76, 130.39, 129.90, 129.36, 128.35,
127.95, 126.85, 126.13, 124.59]. ESI-MS (positive mode, m/z) calculated for C4H3;N¢Os:
666.2379, found: 667.2453 [M + H'].

S5. UV—Vis- and Fluorescence-Spectroscopy Studies. Stock solutions of all the
metal ions (using acetate, chloride, and nitrate salts) (50mM) were prepared in water. Stock
solutions of all the anions (using n-Tetrabutylammonium salts of the corresponding anions)
(50mM) were prepared in DMSO. Stock solutions of TRI-QUI (5%1073 mol L") and TRI-
NAP (5%1073mol L") were prepared in DMSO and then diluted to 10x10~°mol L™! for various
spectral studies by placing only 4.0uL of TRI-QUI or TRI-NAP stock solution into an
aqueous medium to a final volume of 2.0 mL. In the fluorescence/UV-Vis sensing experiment,
the test samples were prepared by placing the appropriate amounts of the stock solutions of the
respective metal ions into 2.0 mL of probe solution (containing 10x107® mol L™! of probe and
0.2% DMSO). For fluorescence titration experiments, 5x1073mol L™! stock solution of
Zn(0OAc),.2H,0 (zinc acetate dihydrate), Cd(OAc),.2H,0 (cadmium acetate dihydrate), and
HgCl, (mercuric chloride) was prepared in DMSO, then it was gradually added into a 2.0 mL
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of probe solution (containing 10x10~®mol L™! of probe and 0.2% DMSO) using a micropipette
in a quartz optical cells with1.0 cm path lengths.

S6. Detection Limit. Using a fluorescence titration experiment as a basis we calculated the
detection limit. The standard deviation (o) of blank measurement was estimated by measuring
the fluorescence emission spectrum of TRI-QUI in water (five times) and HEPES (five times).
Fluorescence emission values to the concentration of Zn?* (obtained from fluorescence titration
experiment) were plotted to measure the slope (k). The following equation was used to

calculate the detection limit:
Detection limit = 3o/k

Where, ¢ = standard deviation of blank measurement, and k = slope between the fluorescence

emission intensity versus concentration of Zn?".

S7. Crystallographic Refinement Details. For the probe TRI-QUI all the details of
the hydrogen-bonding and noncovalent interactions are furnished in Table S1, and also all of
the above given data have been deposited into CCDC. A suitable single crystal was selected
and mounted into a loop. Supernova (a single source at an offset) Eos diffractometer with Mo
Ka radiation (A=0.71073 A) source, connected with a CCD region detector was used to collect
the X-ray intensity data, and all the data refinement and cell reduction were done by using
APEX 3/APEX 4.23Using a narrow-frame algorithm and XPREP, the frames were combined
with the Bruker SAINT software kit,* and data were corrected for absorption effects using the
Multi-Scan process (SADABS)>. Using direct methods in XT, version 2014/15, all of the
structures were solved and after that, refinement was done using the full-matrix least-squares
technique in the SHELXL-2016 and 2018 software packages on F2.® MERCURY 4.2.0 was

used for creating structural drawings.”
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Figure S4. 3C NMR spectrum of TRI-QUI in DMSO-d;.
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Figure S11. Absorbance spectrum of (A) TRI-QUI, and (D) TRI-NAP in DMF and HEPES.

Emission spectroscopy with increasing percentages of HEPES in DMF of (B) TRI-QUI, and
(E) TRI-NAP. Plot of percentage of water vs emission intensity of (C) TRI-QUI and (F) TRI-
NAP [INSET: Visual illustration of the AIE activity of TRI-QUI (20 uM) and TRI-NAP (20
uM) under a 365 nm UV lamp].
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Figure S21. Vial images of TRI-QUI in the presence of different metal ions A) in water, B)
in HEPES, and fluorescence microscope images of TRI-QUI in the presence of Zn**, Cd*"

and Hg?" respectively C) in water and D) in HEPES.

| TRI-QUI+ Zn**

£

C=0 (1644 cm™)

8
!

N-H stretch
(3061 cm™)

% Transmission

8

&

86 -

L T L T L] T L} T ) T X T L T
4000 3500 3000 2500 2000 1500 1000 500
Wavenumber(cm™)

Figure S22. FT-IR spectra of TRI-QUI in the presence of Zn?*.
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Figure S32. TRI-QUI gel formed in DMSO-H,0 (2: 3, v/v) in the presence of different metal
ions A) in normal light and B) in UV light.

Figure S33. FESEM images of A) TRI-QUI xerogel obtained from DMSO-H,0 (2: 3, v/v),
B) TRI-QUI+ Ag?** xerogel obtained from DMSO-H,O (2: 3, v/v), F) TRI-QUI+ SO4*
xerogel obtained from DMSO-H,0 (2: 3, v/v).
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Figure S35. A) Amplitude sweep and B) Frequency sweep of TRI-NAP organogel DMSO-
H,0 (2: 3, v/v).

Table S1. Hydrogen bonding distances (A) and Bond angles (°) in TRI-QUL

Ligand D H-A d(D---H)/A d(H--A)/A d(D--A)/A <DH--A/ Symmetry codes

TRI-QUI NI-HIN:--N5 0.79 (4) 251 (4) 3.189 (5) 145 (4) x. 1-y, 1-z
04-H4B---N6 1.02 (10) 2.07 (10) 3.065 (6) 165 (8) X, Y, 7
N4-H4N:--O1 0.74 (4) 221 (4) 2.931 (5) 164 (4) 1-x, 1-y, 1-z
N7-H7N:--04 0.82 (5) 227 (5) 3.055 (6) 162 (5) 1-x, 1-y, 1-z
C6-H6---04 0.93 2.60 3.354 (6) 139 1-x, 1y, 1-z
C23-H23---01 0.93 2.56 3.369 (5) 146 -1+x, 14y, z
C30-H30---03 0.93 2.52 3.426 (6) 164 x. 1-y, 1-z
C39-H39---02 0.93 2.48 3.337 (6) 154 X, Y, -1+z
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Table S2. Table for LOD and binding constant calculation in H,O and HEPES.

Metal MEDIUM LOD BINDING STOICHIOMETRY
Zn? H,O 14.33 uM 1:1
HEPES 6.45 uM 1:1
Cd?* H,O 20.44 uM 1:1
Hg?* H,O 39.68 uM 1:1
HEPES 45.26 uM 1:1

Table S3. Table for LOD and binding constant calculation in H,O and HEPES.

SI. | References Structure of probe Solvent system LOD (uM)
No.
1. Present work N 0.1M HEPES buffer 6.45
N/
N/
)
0, NH
_N N 2
NN N
o o
N N
NS J ! o
2. Sensors and Actuators B: 10 mM HEPES, pH 7.4, 1:1 8.14 x 107
Chemical, 2015, 213, 268-275 acetonitrile/buffer
/ \N O, —
NH N \N 4
HO, ;
3. RSC Advances, 2015,5, 10 mM bis-tris buffer 4.48
60796-60803 0 HO’>
NhN OH
_/
NN
4. Sensors and Actuators B R MeOH-HEPES buffer (3/7, v/v, 2.1x102
2016, 234, 616-624 pH 7.4)
Z O
N
on N
o
5. Dyes and Pigments 2018, 158, MeOH-Tris buffer (1/1, v/v, pH 4.1x1072
312-318 N 7.2)
Z
N
OTNH
)”j\
6. New J. Chem., 2019,43, 7320- H buffer/DMF mixture (7:3) 0.08
7z
7328 N\N/@\ )
73 N
N HO' )
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7. Dalton Transaction, 2020, 49, 10 mM HEPES buffer 1.39 x 107!
4758-4773 X
N/
/N
K&OH
Br Br
8. New Journal of Chemistry, bis-tris buffer 0.29
2020, 44, 442-449 T\ o
>
NH HN:>
N
q
9, Journal of Fluorescence, DMSO/bis-tris buffer (1:1) 0.53
2020, 30, 347-356 i v@\/ i
10. | Microchemical Journal 2021, DMSO/HEPES buffer solution 72 %1073
160, 105776 X (v/v = 3/2, HEPES 10 mM, pH
©\/ND\¢N~N i B 7.4) e
H N
References
1. S. Sharma, M. Kumariand N. Singh , Soft Matter, 2020, 16, 6532-6538.
2. Apex 3; Bruker AXS Inc.: 2016.
3. Apex 4. Bruker AXS Inc.; 2016.
4. SMART, SAINT, and XPREP; Siemens Analytical X-ray Instruments Inc.: 1995.
5. G. M. Sheldrick, SADABS, Program for Area Detector Adsorption Correction; Institute
for Inorganic Chemistry, University of Gottingen: 1996.
6. G. M. Sheldrick, Crystal structure refinement with SHELXL. Acta Crystallogr., Sect.
C: Struct. Chem., 2015, 71, 3.
7. C. F. Macrae, 1. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M.

Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, Mercury 4.0: from
visualization to analysis, design and prediction. J. Appl. Crystallogr., 2020, 53, 226.

S-22


https://pubs.rsc.org/en/results?searchtext=Author%3AShilpa%20Sharma
https://pubs.rsc.org/en/results?searchtext=Author%3AManisha%20Kumari
https://pubs.rsc.org/en/results?searchtext=Author%3ANarinder%20Singh

