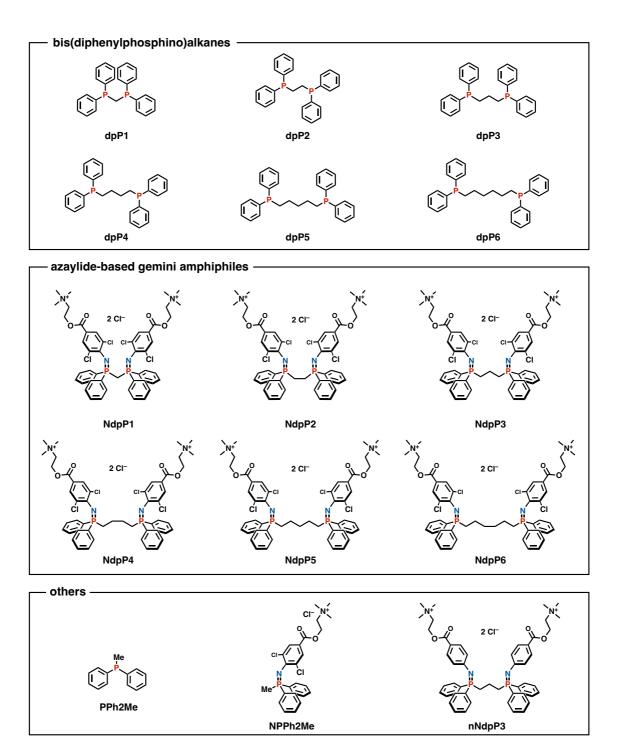
Supporting Information for

Azaylide-based Gemini Amphiphiles Displaying Unique Self-Assembling Behavior via Even-Odd Effect of Alkyl Linker Chain Length

Yoshimori Akiyama, Masahiro Yamashina,* and Shinji Toyota*

Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.


1.	G	S3				
2.	Sy	Synthesis				
	2.1.	Preparation of NdpPn via the Staudinger reaction	S6			
	2.2.	Preparation of NPPh2Me via the Staudinger reaction	S10			
3.	X	-ray crystallography	S11			
4.	U	V-vis and fluorescence spectra of NdpP3	S13			
5.	St	tability in water	S14			
6.	F	ormation of assemblies	S16			
	6.1.	Preparation of assemblies	S16			
	6.2.	¹ H DOSY spectra	S24			
	6.3.	DLS measurements	S25			
	6.4.	Optimized structures	S26			
	6.5.	Determination of CMC	S27			
	6.6.	PXRD analyses	S29			
	6.7.	AFM and TEM images	S30			
7.	Н	S31				
	7.1.	Encapsulation of hydrophobic organic molecules	S31			
	7.2.	UV-vis and fluorescence spectra	S32			
	7.3.	DLS measurements	S34			
	7.4.	Evaluation of uptake quantity	S36			
	7.5.	Optimized structures	S38			
8.	N	S39				

1. General

All reagents and solvents were purchased from commercial sources and used as received. NMR spectra were recorded using a JEOL 500 MHz JNM-ECX500 spectrometer, a 500 MHz JNM-ECZ500 spectrometer, a Bruker 600 MHz Avance III HD Smart Probe NMR spectrometer. Chemical shifts for ¹H, ¹³C, and ³¹P are reported in ppm on the δ scale; ¹H and ¹³C signals were referenced to the residual solvent peak, and ³¹P was referenced to an external standard of 85% H₃PO₄ in D₂O at 0.00 ppm. Electrospray ionization time-offlight (ESI-TOF) was performed on a Bruker micrOTOF II mass Spectrometer. Fourier transform infrared (FT-IR) spectra were measured by a JASCO FT/IR 4100. Single crystal X-ray crystallography was carried out with a Rigaku XtaLAB Synergy R/DW HyPix diffractometer with multi-layer mirror monochromated Cu K α radiation (λ = 1.54184 Å) and processed on a CrysAlisPro 1.171 (Rigaku Oxford Diffraction, 2018), and a diffractometer equipped in a beamline PF-BL5a at the High Energy Accelerator Research Organization (KEK), Japan with a Pilatus 3S6M detector (synchrotron, $\lambda =$ 0.7500 Å) and processed on an XDS ver 2022.01.10^{S1}. The structure was solved by intrinsic phasing methods using SHELXT-2018^{S2} and then refined with SHELXL-2016^{S3} using the Olex2.1.5^{S4} as graphical user interfaces. Since some of solvent molecules were significantly disordered, the solvent mask was performed for the refinement. Powder Xray diffraction data were collected for samples on a Rigaku MiniFlex600. Elemental analyses were performed on a Perkin-Elmer 2400 instrument. UV-visible absorption spectroscopy was performed using a JASCO V-730 UV-Vis-NIR spectrophotometer. Samples were analyzed using quartz cuvettes with optical path lengths of 2.0 mm. Fluorescence spectroscopy was performed using a JASCO FP-8550 spectrofluorometer. Samples were analyzed at room temperature using quartz cuvettes with optical path lengths of 2.0 mm. Molecular mechanics calculation was conducted by Materials Studio program (version 5.5.3, BIOVIA, USA) with the UFF force field. The MM calculation was performed without Cl⁻ ions, and a point charge was assigned to the nitrogen atom in the trimethylammonium group. The optimized structure of micelles was calculated from an initial state, where multiple amphiphilic molecules were arranged spherically so that the averaged distance between carbonyl groups on the hydrophilic part closely matched the value estimated by DLS analysis. DLS spectra were recorded by a Wyatt Technology DynaPro NanoStar with Nano Disp Microcuvettes at 298 K. AFM images were obtained using an Oxford Instruments Cypher S. TEM images were obtained using a HITACHI H- 7650 type zero A. TEM samples were stained by a Nissin-EM EM stainer or a Nanoprobes inc. Nano-W.

References

- [S1]. W. Kabsch Acta Cryst. 2010, **D66**, 125–132.
- [S2]. G. M. Sheldrick *Acta Cryst.* 2015, **A71**, 3–8.
- [S3]. G. M. Sheldrick *Acta Cryst.* 2015, **C71**, 3–8
- [S4]. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann *J. Appl. Cryst.* 2009, **42**, 339–341.

Figure S1. Chemical structures of bis(diphenylphosphino)alkanes, corresponding azaylide-based gemini amphiphiles, and related compounds used in this study.

2. Synthesis

2.1. Preparation of NdpPn via the Staudinger reaction

YA1-168

A CH₃CN solution (7.0 mL) of hydrophilic azide **1** (49.3 mg, 0.139 mmol) and 1,3-bis(diphenylphosphino)propane (**dpP3**; 26.0 mg, 0.0630 mmol, 0.45 equiv.) was added to a 25 mL glass flask, and the mixture was stirred at 60 °C for 10 min. After the solution color changed from bright yellow to colorless, a CHCl₃ solution (3.0 mL) of **dpP3** (4.2 mg, 0.0102 mmol, 0.075 equiv.) was added dropwise over 10 min. After stirring for 10 min, the solvent was removed under reduced pressure. The obtained solid was purified by reprecipitation (CH₃CN/Et₂O) and washed with hexane to afford **NdpP3** as a hygroscopic off-white solid (71.4 mg, 96%). Azaylide-based amphiphiles **NdpP5**, and **NdpP6** were synthesized from **dpP5** (91%) and **dpP6** (92%), respectively, in the same manner as **dpP3**.

NdpP2 and **NdpP4** were synthesized from **dpP2** (98%) and **dpP4** (93%), respectively. Obtained precipitates were washed with hexane. Due to the proximity of two phosphine sites, **NdpP1** was synthesized from **dpP1** (87%) under conditions at 80 °C for 1 h stirring time, employing higher concentration (113 mM). Non-chlorinated azaylide **nNdpP3** was also prepared using non-chlorinated **1'** (83%) in the same manner as **NdpP3**.

for NdpP3

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.74 (dd, J_{H-H} = 7.4 Hz, J_{H-P} = 11.9 Hz, 8H), 7.72 (d, J_{H-P} = 1.1 Hz, 4H), 7.53 (td, J_{H-H} = 7.4 Hz, J_{H-P} = 1.1 Hz, 4H), 7.46 (td, J_{H-H} = 7.4 Hz, J_{H-P} = 2.8 Hz, 8H), 4.66 (br, 4H), 3.86 (br, 4H), 3.22 (s, 18H), 2.91 (br, 4H), 1.64 (br, 2H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.7 (C=O), 149.5 (C_q), 131.9 (d, C_q, J_{C-P} = 103.7 Hz), 131.8 (CH), 130.7 (d, CH, J_{C-P} = 9.5 Hz), 128.8 (CH), 128.7 (CH), 117.8 (C_q), 63.8 (CH₂), 58.7 (CH₂), 52.8 (CH₃), 29.9 (dd, CH₂, J_{C-P} = 64.4 Hz, 13.1 Hz), 14.8 (CH₂). One C_q signal was overlapped; ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 7.3; FT-IR (KBr, cm⁻¹): 3054, 3025, 2967, 1713, 1635, 1578, 1498, 1437, 1377, 1253, 1180, 1117, 1026, 956, 794, 761, 716, 695, 503; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2Cl]²⁺ calcd for C₅₁H₅₆³⁵Cl₄N₄O₄P₂, 496.13; found 496.18; Elemental Analysis: calcd for C₅₁H₅₆Cl₆N₄O₄P₂•(H₂O)₃: C, 54.80; H, 5.59; N, 5.01. Found C, 54.65; H, 5.50; N, 5.22.

for NdpP1

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.90 (dd, J_{H-H} = 7.4 Hz, J_{H-P} = 12.5 Hz, 8H), 7.42 (s, 4H), 7.31–7.21 (m, 12H), 4.87 (t, J_{H-P} = 13.0 Hz, 2H), 4.63 (br, 4H), 3.85 (br, 4H), 3.23 (s, 18H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.7 (C=O), 147.9 (C_q), 133.8 (d, C_q, J_{C-P} = 114.4 Hz), 131.0 (CH), 130.7 (t, CH, J_{C-P} = 4.8 Hz), 128.5 (CH), 128.1 (t, CH, J_{C-P} = 7.2 Hz), 127.9 (t, C_q, J_{C-P} = 7.2 Hz), 116.8 (C_q), 63.8 (CH₂), 58.5 (CH₂), 52.8 (CH₃), 34.7 (t, CH₂, J_{C-P} = 52.5 Hz); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ –3.6; FT-IR (KBr, cm⁻¹): 3057, 3021, 2963, 1706, 1588, 1506, 1437, 1382, 1254, 1119, 1036, 955, 794, 760, 695, 500; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2CI]²⁺ calcd for C₄₉H₅₂³⁵Cl₄N₄O₄P₂, 482.11; found 482.17; Elemental Analysis: calcd for C₄₉H₅₂Cl₆N₄O₄P₂•(C₄H₁₀O)_{0.3}•(H₂O)₃: C, 54.23; H, 5.53; N, 5.04. Found: C, 53.99; H, 5.50; N, 5.25.

for NdpP2

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.76–7.70 (m, 8H), 7.72 (s, 4H), 7.58 (t, J_{H-H} = 7.4 Hz, 4H), 7.50 (t, J_{H-H} = 7.4 Hz, 8H), 4.63 (br, 4H), 3.81 (br, 4H), 3.18 (s, 18H), 2.83 (br, 4H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.5 (C=O), 149.4 (C_q), 132.2 (CH), 130.9 (t, CH, J_{C-P} = 4.8 Hz), 130.5 (m, C_q), 129.1 (d, C_q, J_{C-P} = 4.8 Hz), 129.0 (t, CH, J_{C-P} = 6.0 Hz), 128.8 (CH), 118.4 (C_q), 63.9 (CH₂), 58.7 (CH₂), 52.8 (CH₃), 22.7 (m,

CH₂); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 7.7; FT-IR (KBr, cm⁻¹): 3081, 3002, 2962, 1712, 1577, 1483, 1361, 1251, 1173, 1120, 1034, 957, 793, 758, 727, 696, 629, 518; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2Cl]²⁺ calcd for C₅₀H₅₄³⁵Cl₄N₄O₄P₂, 489.12; found 489.17; Elemental Analysis: calcd for C₅₀H₅₄Cl₆N₄O₄P_{2•}(H₂O)_{2.8}: C, 54.59; H, 5.46; N, 5.09. Found: C, 54.61; H, 5.30; N, 5.18.

for NdpP4

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.83 (dd, J_{H-H} = 7.4 Hz, J_{H-P} = 12.5 Hz, 8H), 7.75 (s, 4H), 7.54 (td, J_{H-H} = 7.4 Hz, J_{H-P} = 1.1 Hz, 4H), 7.48 (td, J_{H-H} = 7.4 Hz, J_{H-P} = 2.8 Hz, 8H), 4.64 (br, 4H), 3.83 (br, 4H), 3.20 (s, 18H), 2.81 (br, 4H), 1.50 (br, 4H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.6 (C=O), 149.7 (C_q), 132.3 (d, C_q, J_{C-P} = 102.5 Hz), 131.7 (CH), 130.8 (d, CH, J_{C-P} = 9.5 Hz), 128.8 (d, CH, J_{C-P} = 6.0 Hz), 128.7 (CH), 128.6 (C_q), 117.6 (C_q), 63.9 (CH₂), 58.6 (CH₂), 52.8 (CH₃), 28.8 (d, CH₂, J_{C-P} = 65.6 Hz), 22.3 (d, CH₂, J_{C-P} = 15.5 Hz); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 8.0; FT-IR (KBr, cm⁻¹): 3055, 3009, 1706, 1579, 1490, 1437, 1385, 1253, 1177, 1116, 1025, 957, 926, 835, 795, 718, 696, 536; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2Cl]²⁺ calcd for C₅₂H₅₈³⁵Cl₄N₄O₄P₂, 503.13; found 503.18; Elemental Analysis: calcd for C₅₂H₅₈Cl₆N₄O₄P₂•(H₂O)_{3.3}: C, 54.92; H, 5.73; N, 4.93. Found: C, 54.90; H, 5.53; N, 4.99.

for NdpP5

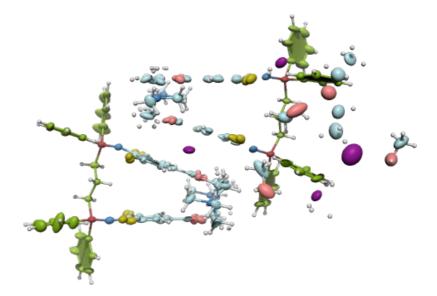
¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.83 (dd, J_{H-H} = 6.8 Hz, J_{H-P} = 11.9 Hz, 8H), 7.76 (s, 4H), 7.55 (t, J_{H-H} = 6.8 Hz, 4H), 7.50 (td, J_{H-H} = 6.8 Hz, J_{H-P} = 2.8 Hz, 8H), 4.64 (br, 4H), 3.83 (br, 4H), 3.20 (s, 18H), 2.69 (br, 4H), 1.37–1.27 (m, 6H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.6 (C=O), 149.7 (C_q), 132.4 (d, C_q, J_{C-P} = 103.7 Hz), 131.7 (CH), 130.7 (d, CH, J_{C-P} = 9.5 Hz), 128.8 (d, CH, J_{C-P} = 7.2 Hz), 128.7 (CH), 128.6 (d, C_q, J_{C-P} = 10.7 Hz), 117.6 (C_q), 63.8 (CH₂), 58.6 (CH₂), 52.8 (CH₃), 30.1 (t, CH₂, J_{C-P} = 13.1 Hz), 28.6 (d, CH₂, J_{C-P} = 64.4 Hz), 20.5 (CH₂); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 7.9; FT-IR (KBr, cm⁻¹): 3054, 2943, 1709, 1577, 1497, 1437, 1377, 1253, 1180, 1117, 1036, 1025, 956, 794, 761, 716, 696; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2CI]²⁺ calcd for C₅₃H₆₀³⁵Cl₄N₄O₄P₂, 510.14; found 510.19; Elemental Analysis: calcd for C₅₃H₆₀Cl₆N₄O₄P₂•(H₂O)₃: C, 55.56; H, 5.81; N, 4.89. Found: C, 55.61; H, 5.65; N, 5.08.

for NdpP6

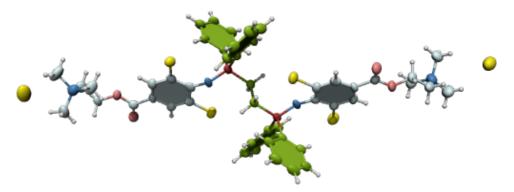
¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.85 (dd, J_{H-H} = 7.4 Hz, J_{H-P} = 11.9 Hz, 8H), 7.76 (d, J_{H-P} = 1.1 Hz, 4H), 7.54 (t, J_{H-H} = 7.3 Hz, 4H), 7.50 (td, J_{H-H} = 7.3 Hz, J_{H-P} = 2.8 Hz, 8H), 4.64 (br, 4H), 3.83 (br, 4H), 3.20 (s, 18H), 2.75 (br, 4H), 1.35–1.16 (m, 8H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.6 (C=O), 149.8 (C_q), 132.5 (d, C_q, J_{C-P} = 103.7 Hz), 131.7 (CH), 130.7 (d, CH, J_{C-P} = 9.5 Hz), 128.8 (d, CH, J_{C-P} = 8.3 Hz), 128.7 (CH), 128.6 (d, C_q, J_{C-P} = 11.9 Hz), 117.5 (C_q), 63.8 (CH₂), 58.6 (CH₂), 52.8 (CH₃), 28.9 (d, CH₂, J_{C-P} = 13.1 Hz), 28.7 (d, CH₂, J_{C-P} = 64.4 Hz), 20.9 (CH₂); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 7.8; FT-IR (KBr, cm⁻¹): 2931, 1715, 1577, 1506, 1437, 1376, 1253, 1117, 1025, 956, 794, 761, 695, 502; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M – 2CI]²⁺ calcd for C₅₄H₆₂³⁵Cl₄N₄O₄P₂, 517.15; found 517.20; Elemental Analysis: calcd for C₅₄H₆₂Cl₆N₄O₄P₂•(H₂O)_{3.5}•(CHCl₃)_{0.1}: C, 55.03; H, 5.90; N, 4.75. Found: C, 54.74; H, 5.69; N, 4.99.

for nNdpP3

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.66 (dd, J_{H-H} = 7.5 Hz, J_{H-P} = 11.5 Hz, 8H), 7.61–7.54 (m, 8H), 7.48 (td, J_{H-H} = 7.5 Hz, J_{H-P} = 2.6 Hz, 8H), 6.54 (d, J_{H-H} = 8.6 Hz, 4H), 4.61 (br, 4H), 3.79 (br, 4H), 3.20 (s, 18H), 2.89 (br, 4H), 1.52 (br, 2H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 165.4 (C=O), 158.1 (C_q), 132.1 (CH), 131.1 (d, CH, J_{C-P} = 8.3 Hz), 130.7 (CH), 129.0 (d, CH, J_{C-P} = 10.7 Hz), 122.0 (d, C_q, J_{C-P} = 20.3 Hz), 116.0 (C_q), 64.2 (CH₂), 57.7 (CH₂), 52.9 (CH₃), 26.0 (dd, CH₂, J_{C-P} = 65.6 Hz, 10.7 Hz), 14.8 (CH₂). One C_q signal was overlapped; ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 9.5; FT-IR (KBr, cm⁻¹): 3024, 2547, 2103, 1918, 1700, 1593, 1542, 1506, 1437, 1339, 1266, 1169, 1105, 1017, 949, 849, 772, 717; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M − 2CI]²⁺ calcd for C₅₁H₆₀³⁵Cl₂N₄O₄P₂, 427.20; found 427.20; Elemental Analysis: calcd for C₅₁H₆₀Cl₂N₄O₄P₂•(H₂O)_{2.5}•(C₂H₃N)_{0.1}•(C₄H₁₀O)_{0.1}: C, 62.76; H, 6.68; N, 6.10. Found: C, 62.82; H, 6.91; N, 6.09.


2.2. Preparation of NPPh2Me via the Staudinger reaction

YA1-176


A CH₃CN solution (20 mL) of hydrophilic azide **1** (100 mg, 0.283 mmol) and methyldiphenylphosphine (**PPh2Me**; 58 μL, 0.309 mmol, 1.1 equiv.) was added to a 50 mL glass flask, and the mixture was stirred at 60 °C for 5 min. After the solution color changed from bright yellow to colorless, the solvent was removed under reduced pressure. The obtained solid was purified by reprecipitation (CH₃CN/Et₂O) and washed with Et₂O to afford **NPPh2Me** as a hygroscopic brown solid (132 mg, 89%).

¹H NMR (500 MHz, DMSO- d_6 , 298 K): δ 7.91 (ddd, J_{H-H} = 6.8 Hz, 1.7 Hz, J_{H-P} = 12.5 Hz, 4H), 7.78 (d, J_{H-P} = 1.7 Hz, 2H), 7.53 (td, J_{H-H} = 6.8 Hz, J_{H-P} = 1.7 Hz, 2H), 7.52 (td, J_{H-H} = 6.8 Hz, J_{H-P} = 3.4 Hz, 4H), 4.64 (br, 2H), 3.82 (br, 2H), 3.19 (s, 9H), 2.46 (d, J_{H-P} = 12.5 Hz, 3H); ¹³C NMR (125 MHz, DMSO- d_6 , 298 K): δ 163.6 (C=O), 149.7 (C_q), 133.6 (d, C_q, J_{C-P} = 106.9 Hz), 131.7 (CH), 130.5 (d, CH, J_{C-P} = 10.3 Hz), 128.8 (d, CH, J_{C-P} = 7.8 Hz), 128.7 (CH), 128.6 (d, C_q, J_{C-P} = 11.5 Hz), 117.7 (C_q), 63.9 (CH₂), 58.6 (CH₂), 52.8 (CH₃), 16.8 (d, CH₃, J_{C-P} = 65.6 Hz); ³¹P NMR (202 MHz, DMSO- d_6 , 298 K): δ 5.0; FT-IR (KBr, cm⁻¹): 3055, 3013, 2967, 2535, 2120, 1980, 1714, 1588, 1498, 1437, 1376, 1251, 1181, 1119, 1026, 997, 957, 881, 794, 762, 743; ESI-TOF MS (CH₃OH/CH₃CN) m/z: [M — CI]⁺ calcd for C₂₅H₂₈³⁵Cl₂N₂O₂P, 489.13; found 489.13; Elemental Analysis: calcd for C₂₅H₂₈Cl₃N₂O₂P•(H₂O)_{1.4}•(C₂H₂N)_{0.2}: C, 54.55; H, 5.66; N, 5.51. Found C, 54.44; H, 5.65; N, 5.42.

3. X-ray crystallography

Figure S2. ORTEP drawing of **NdpP3**^I, an analogue of **NdpP3** (phosphorus (red), nitrogen (blue), oxygen (pink), carbon (green and light blue), chlorine (yellow), iodine (purple). The thermal ellipsoids are drawn at 50% probability.

Figure S3. ORTEP drawing of **NdpP2** (phosphorus (red), nitrogen (blue), oxygen (pink), carbon (green and light blue), chlorine (yellow). The thermal ellipsoids are drawn at 50% probability.

Table S1. Crystal data and structure refinement.

Compounds	NdpP3 ^I	NdpP2	
Identification code	NdpP3I	NdpP2	
CCDC number	2342817	2342818	
Empirical formula	$C_{54.09}H_{64.09}Cl_{4}I_{2}N_{4}O_{6}P_{2}$	$C_{50}H_{54}Cl_6N_4O_4P_2$	
Formula weight	1323.83	1049.61	
Temperature (K)	93	123	
Wavelength (Å)	0.750	1.54184	
Crystal system	monoclinic	triclinic	
Space group	$P2_1/n$	P-1	
Unit cell dimensions			
a (Å)	21.492(3)	9.4418(3)	
<i>b</i> (Å)	22.384(6)	17.2643(12)	
c (Å)	26.001(4)	17.5420(10)	
$lpha(^\circ)$	90	78.146(5)	
$eta(^\circ)$	111.870(9)	78.602(4)	
γ(°)	90	81.396(4)	
Volume (Å ³)	11608(4)	2725.5(3)	
Z	8	2	
Density (calculated)	1.515	1.279	
Absorption coefficient	1.577	3.789	
F(000)	5349.0	1092.0	
Crystal size	$0.2\times0.1\times0.1$	$0.251 \times 0.133 \times 0.082$	
2θ range for data collection	2.226 to 71.372	5.226 to 134.15	
Index ranges	$-32 \le h \le 33$	$-10 \le h \le 11$	
	$-33 \le k \le 32$	$-20 \le k \le 20$	
	$-40 \le 1 \le 40$	$-20 \le l \le 20$	
Reflections collected	125809	27888	
Independent reflections	43115 [$R_{int} = 0.0529$]	9693 [$R_{int} = 0.0974$]	
Completeness to θ	0.942	0.997	
Absorption correction	multi-scan	multi-scan	
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²	
Data / restraints / parameters	43115/326/1851	9693/0/601	
Goodness-of-fit on F^2	1.038	1.045	
Final <i>R</i> indices [<i>I</i> >2sigma(<i>I</i>)]	$R_1 = 0.0931$	$R_1 = 0.1280$	
	$wR_2 = 0.2728$	$wR_2 = 0.3646$	
R indices (all data)	$R_1 = 0.1877$	$R_1 = 0.1725$	
	$wR_2 = 0.3325$	$wR_2 = 0.3917$	
Largest diff. peak and hole	1.514 and -1.831 e Å ⁻³	$0.855 \text{ and } -0.787 \text{ e Å}^{-3}$	

4. UV-vis and fluorescence spectra of NdpP3

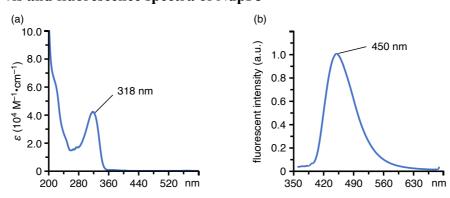
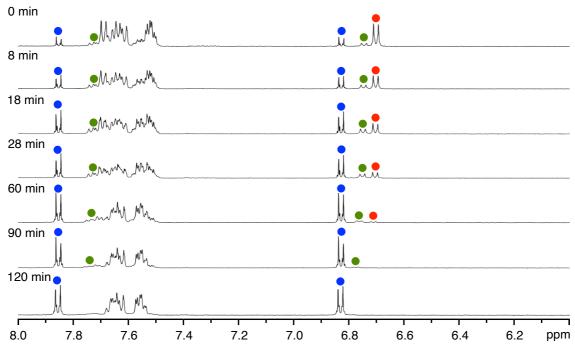



Figure S4. (a) UV-vis and (b) fluorescence spectra (CH₃CN, 298 K, 0.05 mM) of NdpP3.

5. Stability in water

NdpP3 (X = Cl, 2.7 mg, 2.5 μ mol) was dissolved in D₂O (5.0 mL). The stability of azaylides against water was monitored by ¹H NMR analysis at room temperature (298 K). The stability of **nNdpP3** (X = H) for water was also evaluated by the same procedure as **NdpP3**.

Figure S5. Time-course ¹H NMR spectra (500 MHz, 298 K, D₂O, 0.5 mM) of **nNdpP3** (red: **nNdpP3**, blue: **2'**, green: **3'**).

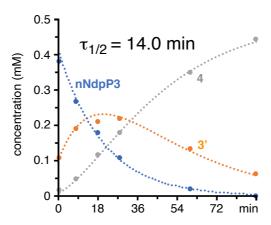
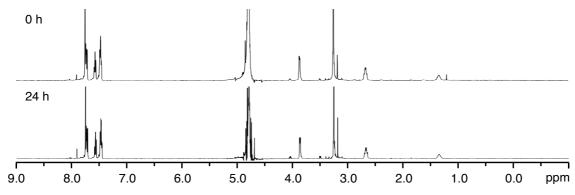


Figure S6. Changes in concentrations of nNdpP3, 3', and 4 during decomposition of nNdpP3.


Table S2. Changes in concentrations of nNdpP3, 3', and 4 and half-life of nNdpP3.

	Concentration (mM) ^[a]					k ₁ ^[c]	<i>k</i> ₂ ^[c]	$\tau_{1/2}^{\text{[d]}}$		
	0	8	18	28	60	90	120 (min)	min ⁻¹	min ⁻¹	min
nNdpP3	0.377	0.264	0.177	0.108	0.020	0.000	0.000			
2'	0.137	0.284	0.439	0.568	0.828	0.939	1.000	0.049	0.030	14.0
3'	0.108	0.189	0.208	0.216	0.132	0.061	0.000			
4 ^[b]	0.015	0.048	0.115	0.176	0.348	0.439	0.500			

[[]a]: Calculated by NMR signal intensities. [b]: Calculated by [nNdpP3]₀-([nNdpP3]+[3']).

Calculated by reaction rate equation of consecutive first order reaction.

[[]d]: Half-life of **nNdpP3** calculated by $\tau_{1/2} = (1/k_1) \ln 2$.

Figure S7. ¹H NMR spectra (500 MHz, 298 K, D₂O, 0.5 mM of **NdpP3** (0 h (top) and after 24 h (bottom)).

[[]c]: Decomposition rate constants of **nNdpP3** (k_1) and **3'** (k_2) .

6. Formation of assemblies

6.1. Preparation of assemblies

$$\begin{array}{c} \text{N} \\ \text{P} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{N} \\ \text{P} \\ \text{N} \\ \text{$$

A gemini amphiphile **NdpPn** (2.0 μ mol) was dissolved in H₂O or D₂O (1.0 mL). The formation of either micelles or layered structures was confirmed by NMR, DLS, and electron microscopic analyses.

for $(NdpP3)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP3**): δ 7.84–7.11 (br, 24H), 4.66 (br, 4H), 3.75 (br, 4H), 3.15 (br, 18H), 2.58 (br, 4H), 1.42 (br, 2H); ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP3**): δ 13.7.

for $(NdpP1)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP1**): δ 7.78 (br, 8H), 7.45 (br, 4H), 7.19 (br, 12H), 4.60 (br, 4H), 3.72 (br, 4H), 3.15 (br, 18H). The methylene signal was overlapped with HDO signal; ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP1**): δ –2.3.

for $(NdpP5)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP5**): δ 7.82–6.84 (br, 24H), 4.52 (br, 4H), 3.64 (br, 4H), 3.05 (br, 18H), 2.29 (br, 4H), 1.09 (br, 6H); ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP5**): δ 9.4.

for $(NdpP2)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP2**): δ 7.80 (s, 4H), 7.70 (dd, J_{H-} H = 7.4 Hz, J_{H-P} = 12.5 Hz, 8H), 7.61 (t, J_{H-H} = 7.4 Hz, 4H), 7.48 (dd, J_{H-H} = 7.4 Hz, 7.4 Hz, 8H), 3.86 (br, 4H), 3.24 (s, 18H), 2.59 (br, 4H). The methylene signal was overlapped with HDO signal; ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP2**): δ 16.0.

for $(NdpP4)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP4**): δ 7.85 (s, 4H), 7.72 (dd, J_{H-H} = 7.4 Hz, J_{H-P} = 11.9 Hz, 8H), 7.58 (t, J_{H-H} = 7.4 Hz, 4H), 7.48 (ddd, J_{H-H} = 7.4 Hz, 7.4 Hz, J_{H-P} = 2.3 Hz, 8H), 4.69 (br, 4H), 3.78 (br, 4H), 3.18 (s, 18H), 2.30 (br, 4H); ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP4**): δ 15.6.

for $(NdpP6)_m$

¹H NMR (500 MHz, D₂O, 298 K, 2.0 mM based on **NdpP6**): δ 7.80–6.93 (br, 24H), 4.50 (br, 4H), 3.62 (br, 4H), 3.03 (br, 18H), 2.32 (br, 4H), 1.27–0.54 (br, 8H); ³¹P NMR (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP6**): δ 9.5.

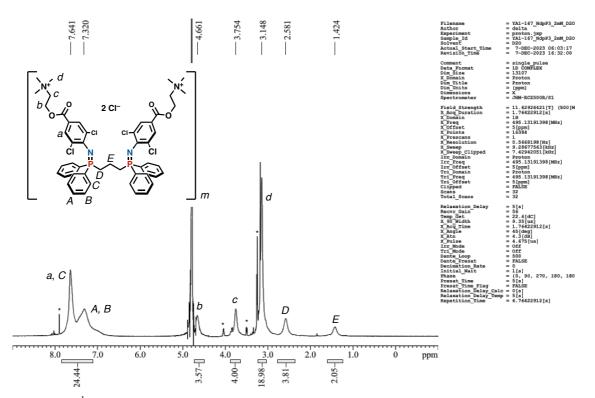
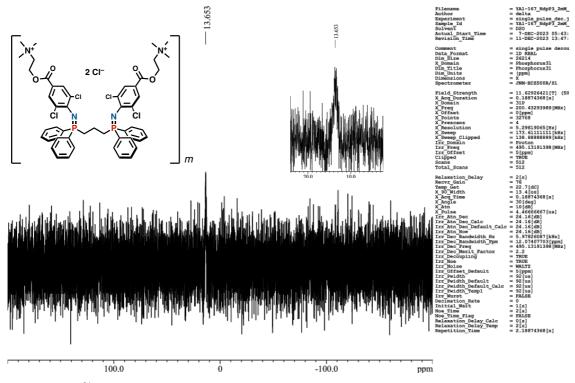



Figure S8. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM based on NdpP3) of (NdpP3)_m.

Figure S9. ³¹P NMR spectrum (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP3**) of (**NdpP3**)_m.

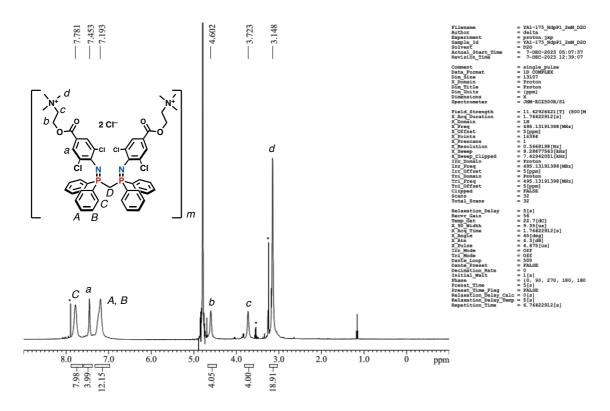


Figure S10. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM based on NdpP1) of (NdpP1)_m.

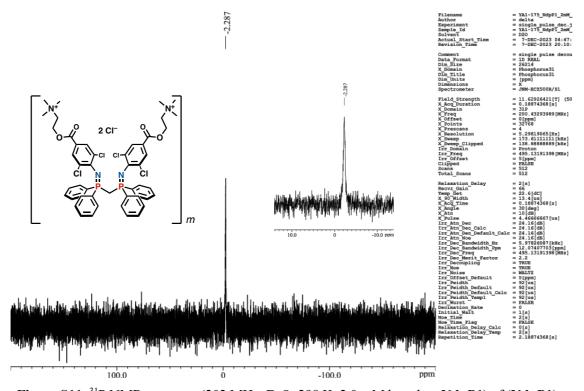


Figure S11. ³¹P NMR spectrum (202 MHz, D₂O, 298 K, 2.0 mM based on **NdpP1**) of (**NdpP1**)_m.

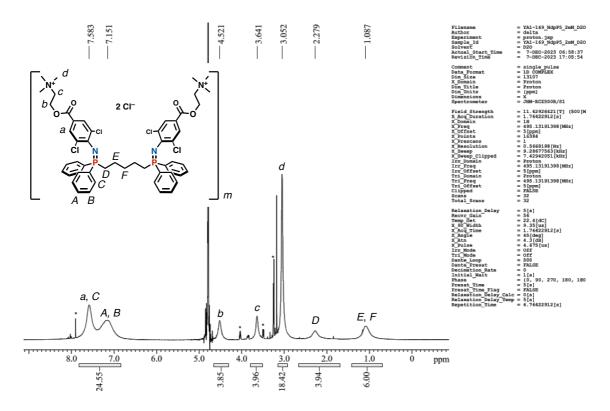


Figure S12. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM based on NdpP5) of (NdpP5)_m.

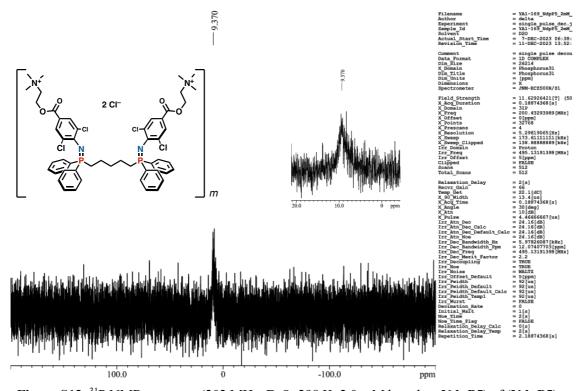
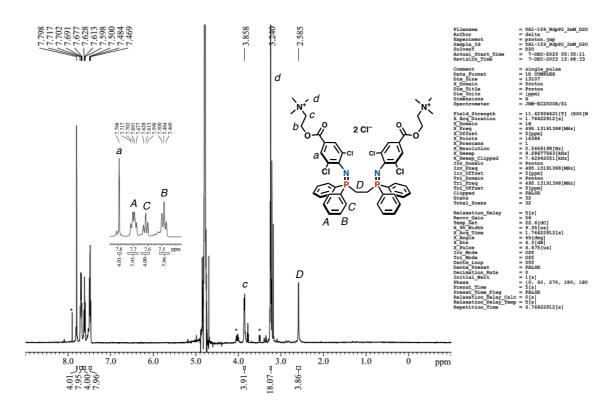



Figure S13. 31 P NMR spectrum (202 MHz, D₂O, 298 K, 2.0 mM based on NdpP5) of (NdpP5)_m.

Figure S14. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM) of **NdpP2**.

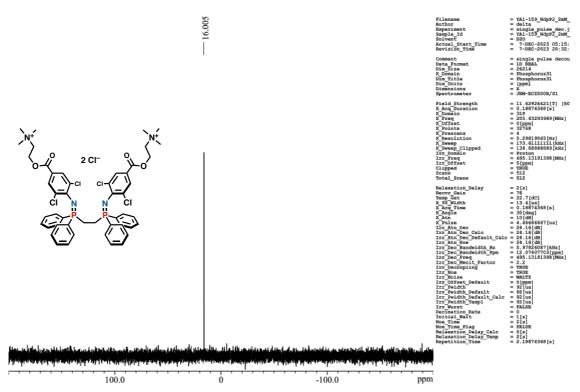
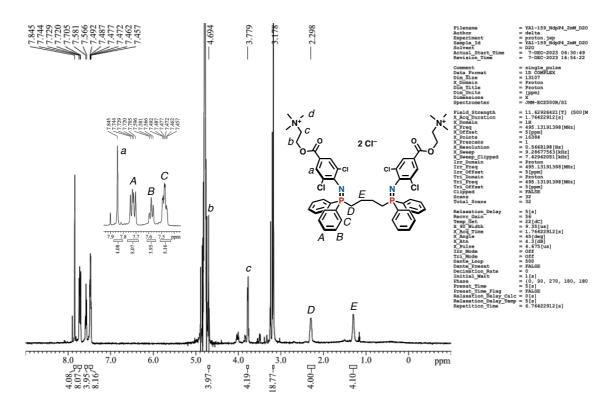



Figure S15. ^{31}P NMR spectrum (202 MHz, D_2O , 298 K, 2.0 mM) of NdpP2.

Figure S16. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM) of **NdpP4**.

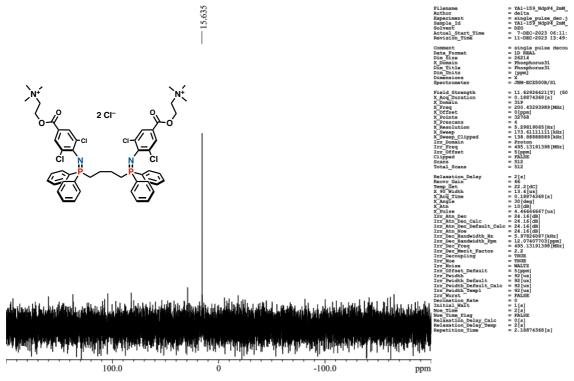


Figure S17. ³¹P NMR spectrum (202 MHz, D₂O, 298 K, 2.0 mM) of NdpP4.

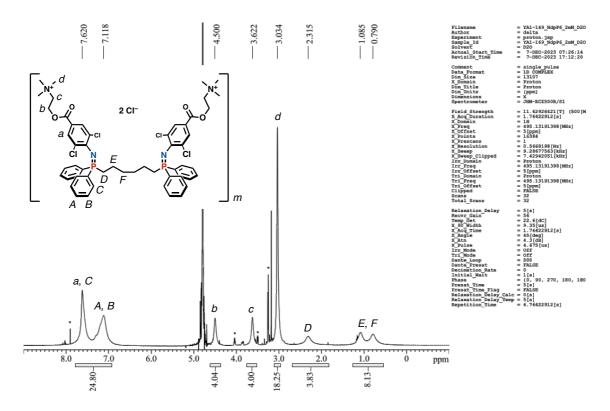


Figure S18. ¹H NMR spectrum (500 MHz, D₂O, 298 K, 2.0 mM based on NdpP6) of (NdpP6)_m.

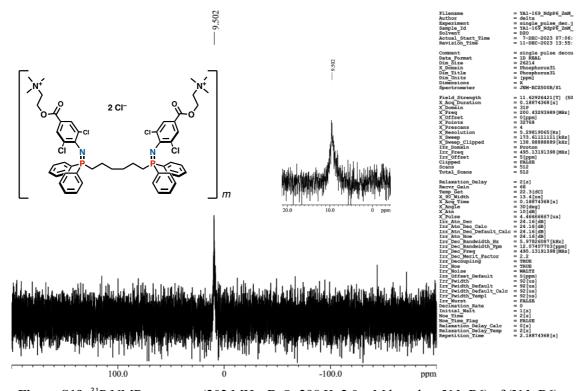
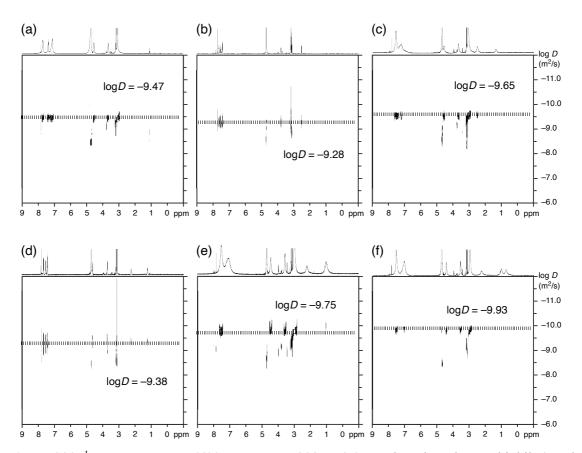



Figure S19. ³¹P NMR spectrum (202 MHz, D₂O, 298 K, 2.0 mM based on NdpP6) of (NdpP6)_m.

6.2. ¹H DOSY spectra

Figure S20. ¹H DOSY spectra (600 MHz, D₂O, 298 K, 2.0 mM based on the amphiphiles) and diffusion coefficients of (a) (NdpP1)_m, (b) (NdpP2)_m, (c) (NdpP3)_m, (d) (NdpP4)_m, (e) (NdpP5)_m, and (f) (NdpP6)_m.

6.3. DLS measurements

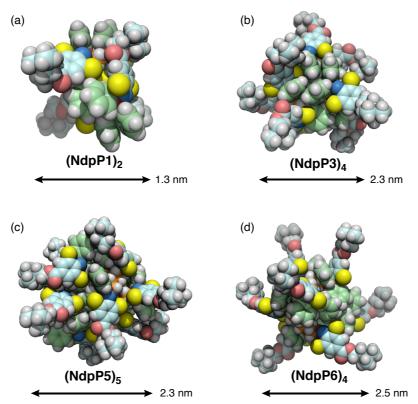



Figure S21. DLS charts (H₂O, 298 K, 2.0 mM based on the amphiphiles) of (a) $(NdpP1)_m$, (b) $(NdpP2)_m$, (c) $(NdpP3)_m$, (d) $(NdpP4)_m$, (e) $(NdpP5)_m$, and (f) $(NdpP6)_m$.

6.4. Optimized structures

Figure S22. Space-filling representations of optimized structures of (a) (NdpP1)₂, (b) (NdpP3)₄, (c) (NdpP5)₅ and (d) (NdpP6)₄ (phosphorus (red), nitrogen (blue), oxygen (pink), carbon (green, light blue, and orange), chlorine (yellow).

6.5. Determination of CMC

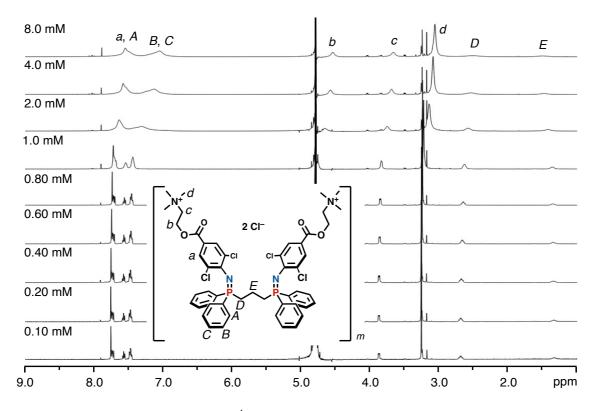
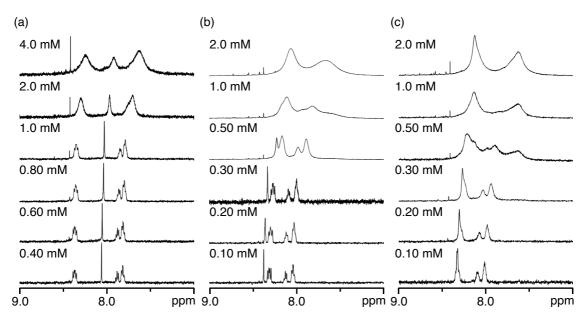



Figure S23. Variable concentration ¹H NMR spectra (500 MHz, D₂O, 298 K) of (NdpP3)_m.

Figure S24. Variable concentration ¹H NMR spectra (500 MHz, D₂O, 298 K) of (a) (**NdpP1**)_m, (b) (**NdpP5**)_m, and (c) (**NdpP6**)_m.

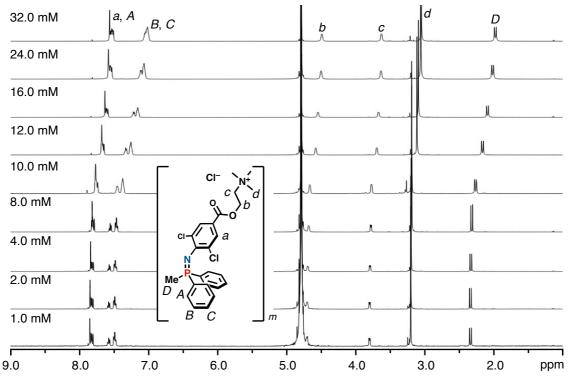
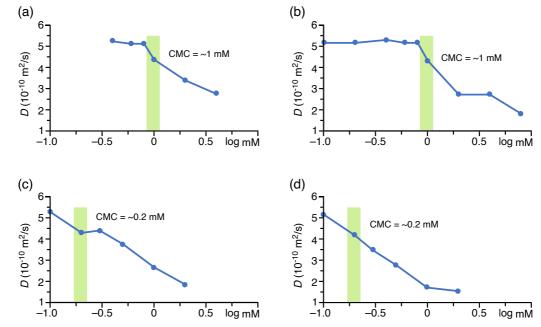
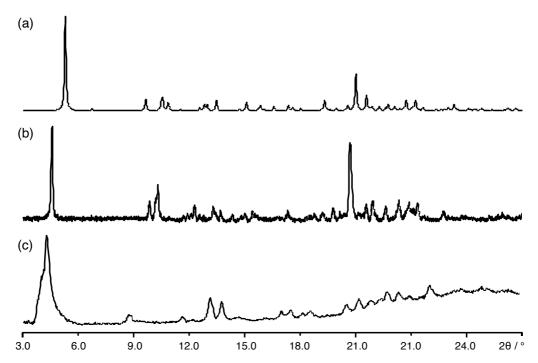
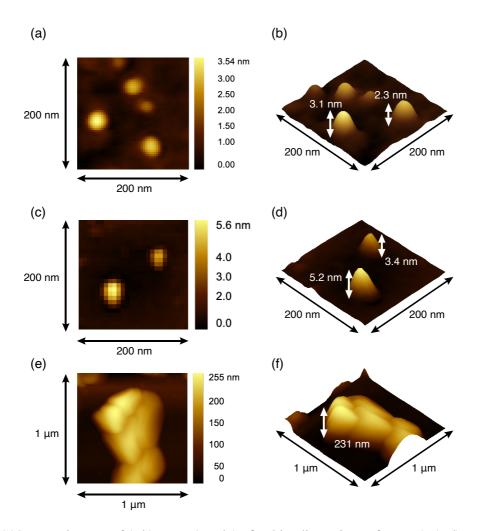




Figure S25. Variable concentration ¹H NMR spectra (500 MHz, D₂O, 298 K) of (NPPh2Me)_m.


Figure S26. Concentration-dependent diffusion constants (*D*) of (a) **NdpP1**, (b) **NdpP3**, (c) **NdpP5**, and (d) **NdpP6**.

6.6. PXRD analyses

Figure S27. Powder X-ray diffraction (PXRD) patterns of (a) simulation based on the result of single crystal X-ray diffraction (SXRD) of **NdpP2** and white dispersions of (b) **NdpP2** and (c) **NdpP4**.

6.7. AFM and TEM images

Figure S28. AFM images of (a,b) **NdpP3** and (c–f) white dispersions of **NdpP2**. (c,d) Local and (e,f) wide-area observations.

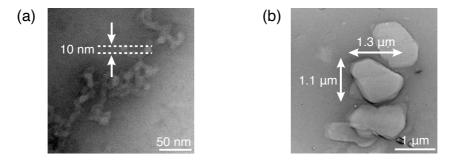
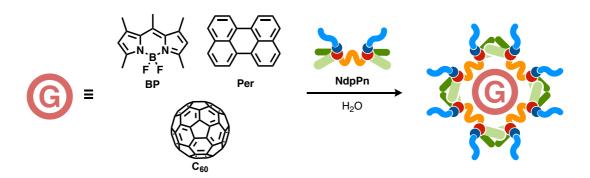
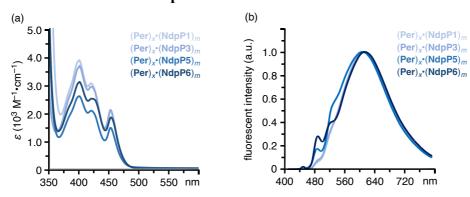



Figure S 29. TEM images of white dispersions of NdpP2. (a) Local and (b) wide-area observations.


7. Host-guest chemistry

7.1. Encapsulation of hydrophobic organic molecules

A hydrophobic aromatic compound (4.0 μ mol) and gemini amphiphile **NdpPn** (4.0 μ mol) or monomeric amphiphile **NPPh2Me** (8.0 μ mol) were ground in a mortar for 3 min and subsequently H₂O (2.0 mL) was added. The suspension was vigorously stirred for 1 h at room temperature. The excess of guests was removed by filtration. The formation of host-guest complexes was confirmed by NMR, UV-vis, fluorescence, and DLS analyses with an appropriately diluted solution.

7.2. UV-vis and fluorescence spectra

Figure S30. (a) UV-vis and (b) fluorescence spectra (H₂O, 298 K, 2.0 mM based on the amphiphiles) of (Per)_x•(NdpP1)_m, (Per)_x•(NdpP3)_m, (Per)_x•(NdpP5)_m, and (Per)_x•(NdpP6)_m.

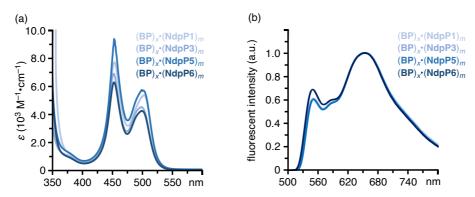


Figure S31. (a) UV-vis and (b) fluorescence spectra (H₂O, 298 K, 2.0 mM based on the amphiphiles) of (BP)_x•(NdpP1)_m, (BP)_x•(NdpP3)_m, (BP)_x•(NdpP5)_m, and (BP)_x•(NdpP6)_m.

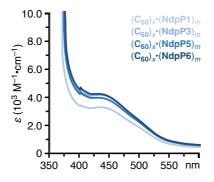
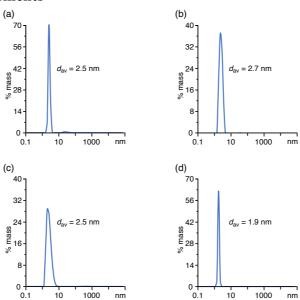
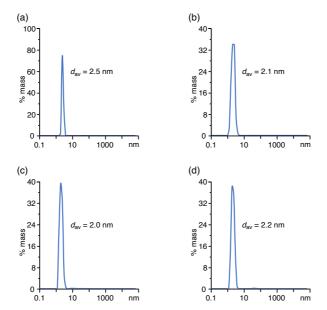


Figure S32. UV-vis spectra (H₂O, 298 K, 2.0 mM based on the amphiphiles) of $(C_{60})_x \cdot (NdpP1)_m$, $(C_{60})_x \cdot (NdpP3)_m$, $(C_{60})_x \cdot (NdpP5)_m$, and $(C_{60})_x \cdot (NdpP6)_m$.

Table S3. Photophysical data of (a) $(\mathbf{Per})_x \bullet (\mathbf{NdpPn})_m$, (b) $(\mathbf{BP})_x \bullet (\mathbf{NdpPn})_m$, and (c) $(\mathbf{C}_{60})_x \bullet (\mathbf{NdpPn})_m$ (n = 1, 3, 5, 6) $(\mathbf{H}_2\mathbf{O}, 298\ \mathbf{K})$.


(b)

amphiphile	guest	λ _{max} / nm	λ_{em} / nm	amphiphile	guest	λ_{max} / nm	λ _{em} / nm
NdpP1	Per	401/421/453	608	NdpP1	ВР	455/500	551/655
NdpP3	Per	401/421/453	610	NdpP3	BP	453/500	550/655
NdpP5	Per	401/421/453	421/486/605	NdpP5	BP	454/500	551/651
NdpP6	Per	401/422/454	418/487/611	NdpP6	BP	453/500	551/638


(c)

amphiphile	guest	λ_{max} / nm	λ_{em} / nm	
NdpP1	C ₆₀	433	_	
NdpP3	C ₆₀	434	-	
NdpP5	C ₆₀	430	-	
NdpP6	C ₆₀	429	_	

7.3. DLS measurements

Figure S33. DLS charts (H₂O, 298 K, 2.0 mM based on the amphiphiles) and average diameters of (a) (**Per**)_x•(**NdpP1**)_m, (b) (**Per**)_x•(**NdpP3**)_m, (c) (**Per**)_x•(**NdpP5**)_m, and (d) (**Per**)_x•(**NdpP6**)_m.

Figure S34. DLS charts (H₂O, 298 K, 2.0 mM based on the amphiphiles) and average diameters of (a) $(\mathbf{BP})_x \bullet (\mathbf{NdpP1})_m$, (b) $(\mathbf{BP})_x \bullet (\mathbf{NdpP3})_m$, (c) $(\mathbf{BP})_x \bullet (\mathbf{NdpP5})_m$, and (d) $(\mathbf{BP})_x \bullet (\mathbf{NdpP6})_m$.

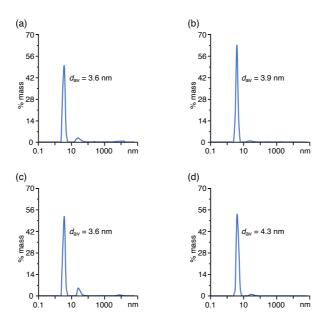
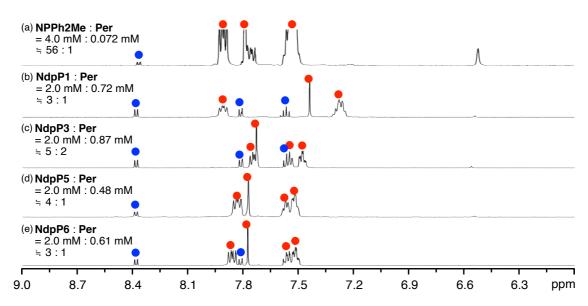
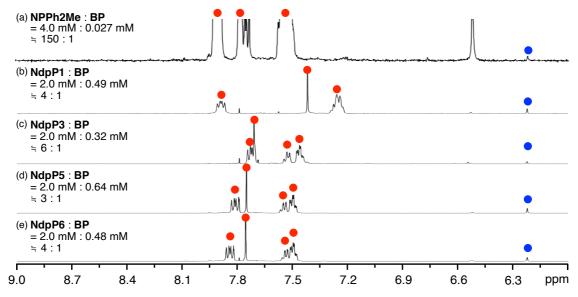




Figure S35. DLS charts (H₂O, 298 K, 2.0 mM based on the amphiphiles) and average diameters of (a) $(\mathbf{C}_{60})_x \bullet (\mathbf{NdpP1})_m$, (b) $(\mathbf{C}_{60})_x \bullet (\mathbf{NdpP3})_m$, (c) $(\mathbf{C}_{60})_x \bullet (\mathbf{NdpP5})_m$, and (d) $(\mathbf{C}_{60})_x \bullet (\mathbf{NdpP6})_m$.

7.4. Evaluation of uptake quantity

Figure S36. ¹H NMR spectra (500 MHz, 298 K, DMSO- d_6) of (a) (**Per**)_{x*}(**NPPh2Me**)_m, (b) (**Per**)_{x*}(**NdpP1**)_m, (c) (**Per**)_{x*}(**NdpP3**)_m, (d) (**Per**)_{x*}(**NdpP5**)_m, and (e) (**Per**)_{x*}(**NdpP6**)_m. Aqueous solution of host-guest complexes was evaporated and then the residue was dissolved in DMSO- d_6 (red: amphiphiles and blue: **Per**).

Figure S37. ¹H NMR spectra (500 MHz, 298 K, DMSO- d_6) of (a) (**BP**)_x•(**NPPh2Me**)_m, (b) (**BP**)_x•(**NdpP1**)_m, (c) (**BP**)_x•(**NdpP3**)_m, (d) (**BP**)_x•(**NdpP5**)_m, and (e) (**BP**)_x•(**NdpP6**)_m. Aqueous solution of host-guest complexes was evaporated and then the residue was dissolved in DMSO- d_6 (red: amphiphiles and blue: **BP**).

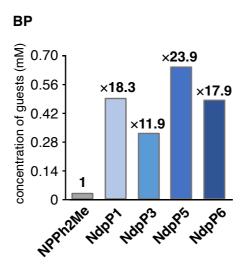


Figure S38. Comparisons of uptake quantity of BP by NPPh2Me and NdpPn (n = 1, 3, 5, 6). The number on the bar indicates relative uptake ratio to NPPh2Me.

7.5. Optimized structures

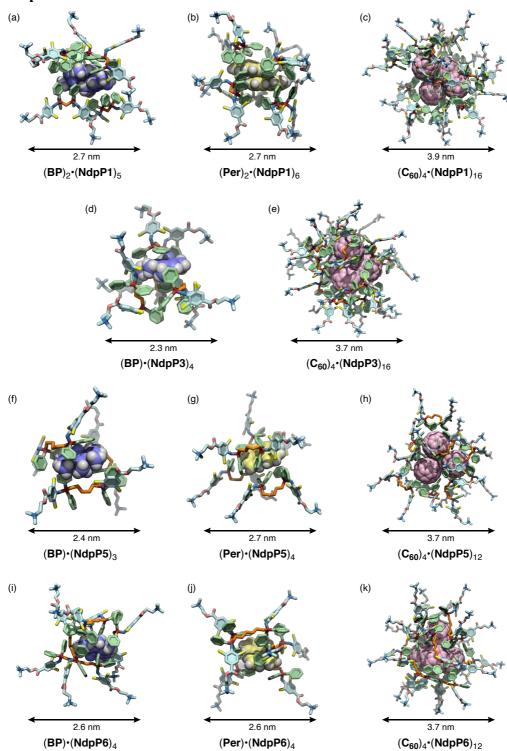
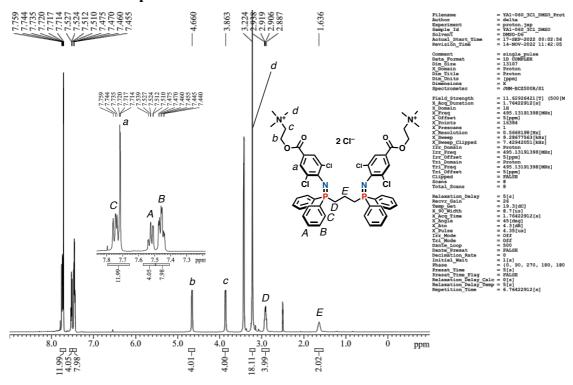
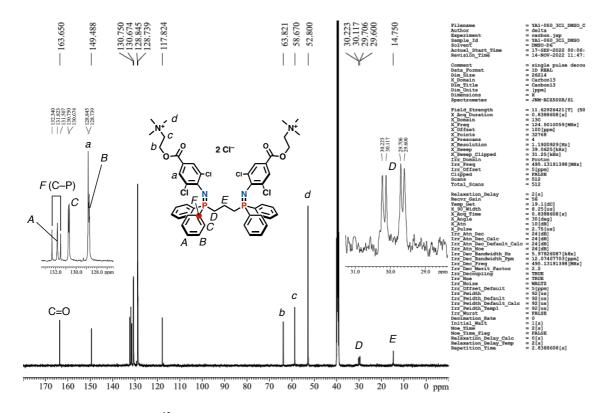




Figure S 39 . Optimized structures of (a) $(BP)_2 \cdot (NdpP1)_5$, (b) $(Per)_2 \cdot (NdpP1)_6$, (c) $(C_{60})_4 \cdot (NdpP1)_{16}$, (d) $(BP) \cdot (NdpP3)_4$, (e) $(C_{60})_4 \cdot (NdpP3)_{16}$, (f) $(BP) \cdot (NdpP5)_3$, (g) $(Per) \cdot (NdpP5)_4$, (h) $(C_{60})_4 \cdot (NdpP5)_{12}$, (i) $(BP) \cdot (NdpP6)_4$, (j) $(Per) \cdot (NdpP6)_4$, (k) $(C_{60})_4 \cdot (NdpP6)_{12}$, estimated by molecular mechanics calculation.

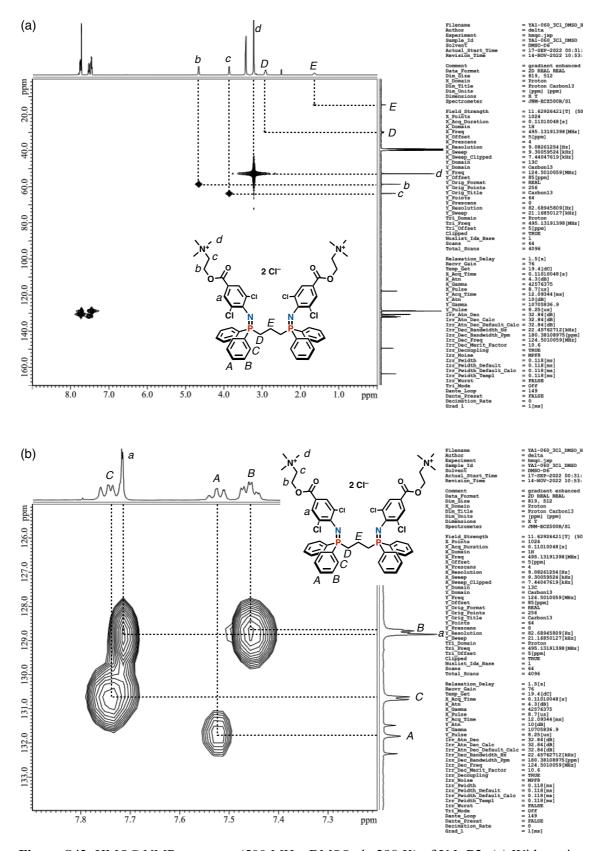

8. NMR and MS spectra

Figure S40. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP3**.

Figure S41. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NdpP3**.

Figure S42. HMQC NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP3**. (a) Wide region and (b) its aromatic region.

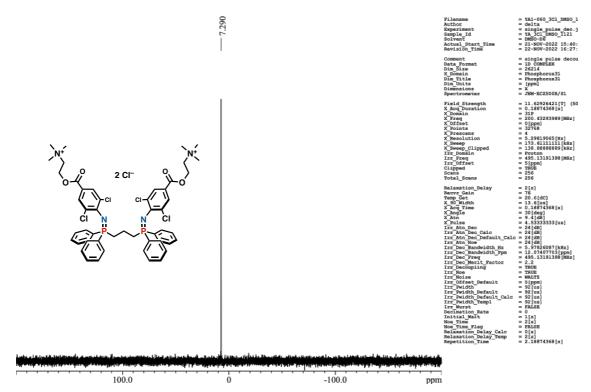


Figure S43. 31 P NMR spectrum (202 MHz, DMSO- d_6 , 298 K) of NdpP3.

		Display	Report			
Analysis Info Analysis Name	D:\Data\ofcbunseki\irai\2023\toyota_lab\yamashina\231019\			Acquisition Date 2023/10/19 10:11:25		
Method Sample Name Comment	esi_posi_low.m NdpP3-		Operator BDAL@DE Instrument micrOTOF 213750.10			
Acquisition Par	ameter					
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valve	0.3 Bar 180 ∢C 4.0 l/min Waste	

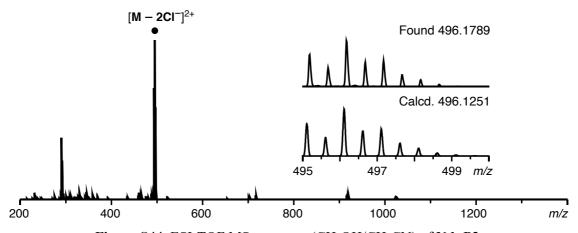
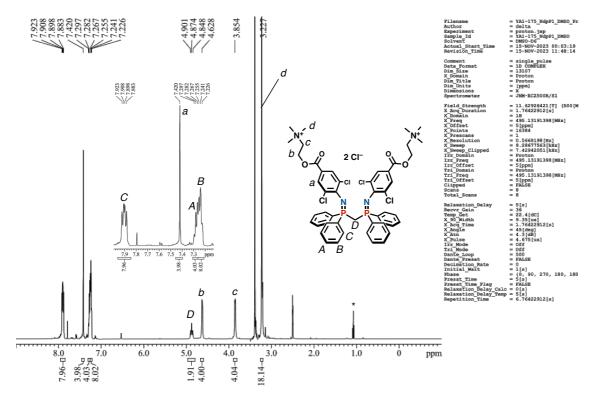



Figure S44. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP3.

Figure S45. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP1** (*: diethyl ether).

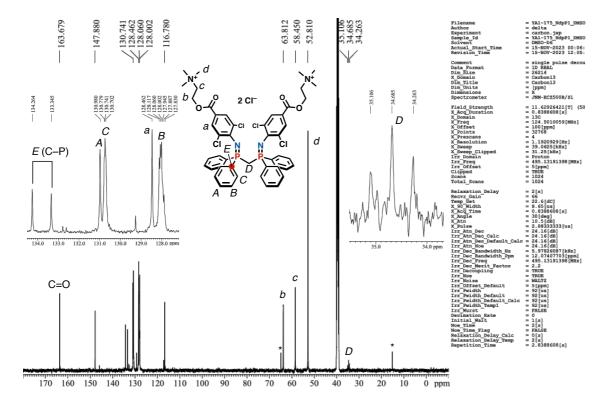
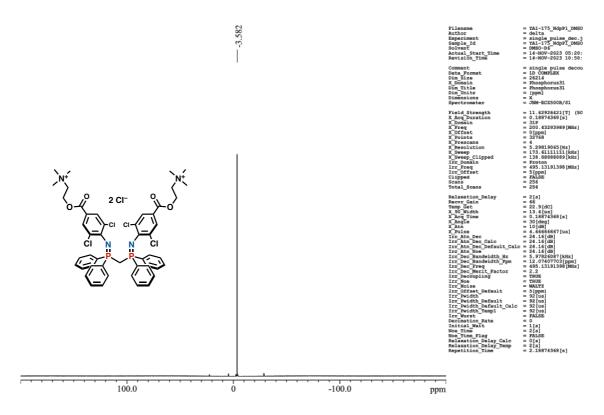



Figure S46. 13 C NMR spectrum (125 MHz, DMSO- d_6 , 298 K) of NdpP1 (*: diethyl ether).

Figure S47. ³¹P NMR spectrum (202 MHz, DMSO-*d*₆, 298 K) of **NdpP1**.

Display Report							
Analysis Info Analysis Name	D:\Data\ofcbunseki	Acquisition Date 2023/10/19 9:46:36					
Method Sample Name Comment	esi_posi_low.m NdpP1-			Operator Instrument	BDAL@DE micrOTOF	213750.10321	
Acquisition Par	ameter						
Source Type Focus	ESI Not active	Ion Polarity	Positive		ebulizer ry Heater	0.3 Bar 180 ∢C	
Scan Begin Scan End	50 m/z 1500 m/z	Set Capillary Set End Plate Offset	4500 V -500 V		ry Gas ivert Valve	4.0 l/min Waste	

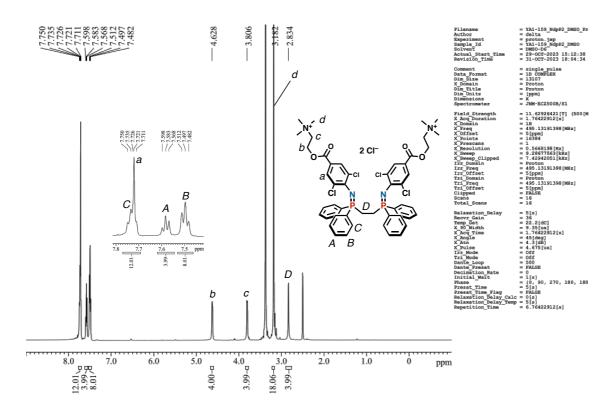
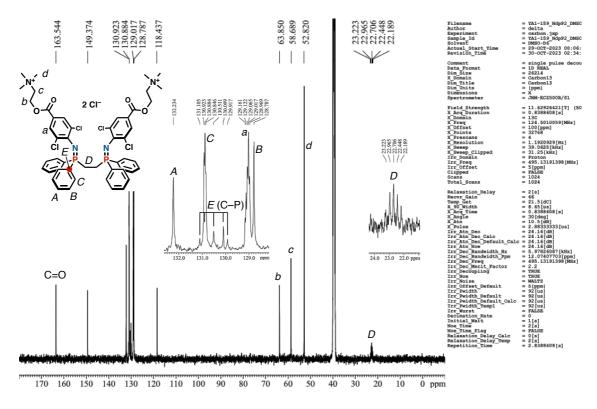




Figure S48. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP1.

Figure S49. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP2**.

Figure S50. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NdpP2**.

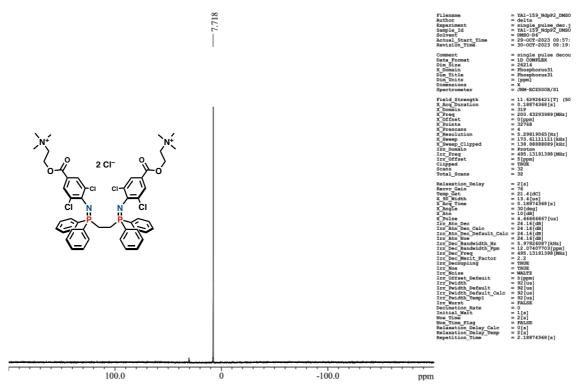
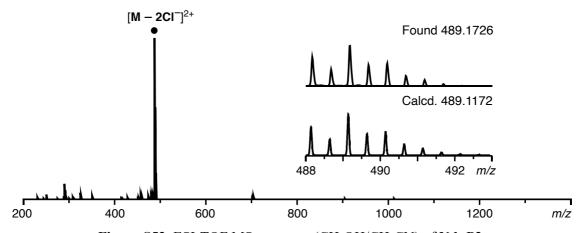
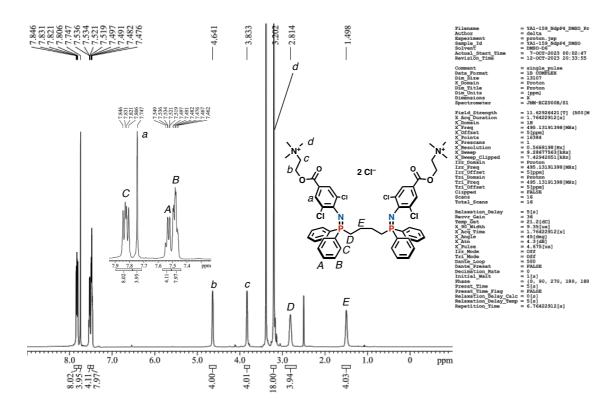
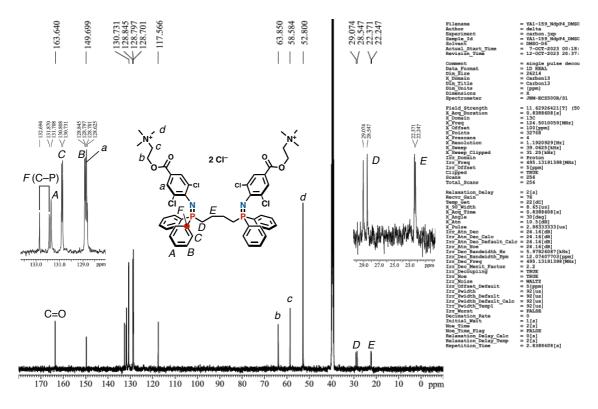


Figure S51. 31 P NMR spectrum (202 MHz, DMSO- d_6 , 298 K) of NdpP2.

Display Report							
Analysis Info Analysis Name	D:\Data\ofcbunsek	•	Acquisition Date 2023/10/19 9:57:22				
Method Sample Name Comment	esi_posi_low.m NdpP2-		Operator Instrument	BDAL@DE micrOTOF	213750.10321		
Acquisition Par	ameter						
Source Type Focus	ESI Not active	Ion Polarity	Positive		ebulizer ry Heater	0.3 Bar 180 ∢C	
Scan Begin Scan End	50 m/z 1500 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set D	ry Gas ivert Valve	4.0 l/min Waste	

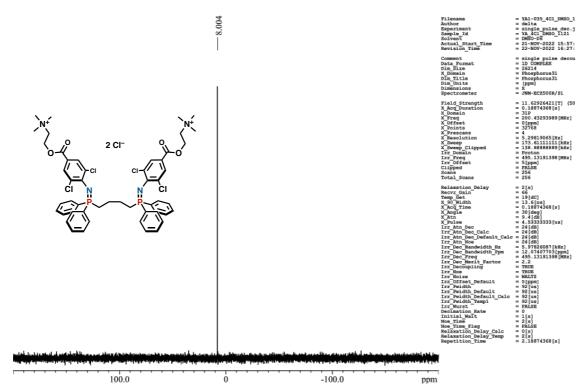
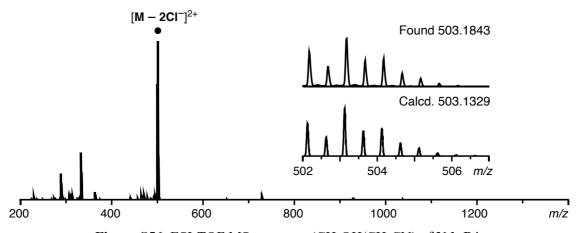
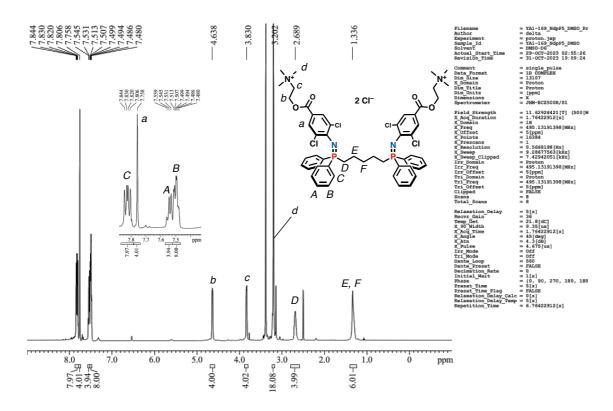
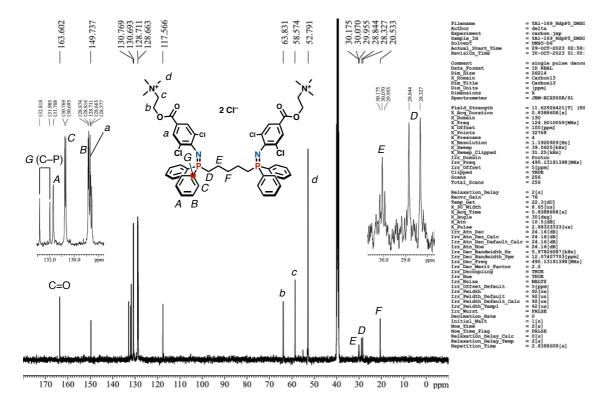

Figure S52. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP2.

Figure S53. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP4**.

Figure S54. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NdpP4**.

Figure S55. ³¹P NMR spectrum (202 MHz, DMSO-*d*₆, 298 K) of **NdpP4**.

		Display	Report			
Analysis Info Analysis Name	D:\Data\ofcbunseki\irai\2023\toyota lab\yamashina\231019\f			Acquisition Date 2023/10/19 10:23:25		
Method Sample Name Comment	esi_posi_low.m NdpP4-		Operator BDAL@DE Instrument micrOTOF 213750.1032			
Acquisition Par	ameter					
Source Type Focus Scan Begin Scan End	ESI Not active 50 m/z 1500 m/z	lon Polarity Set Capillary Set End Plate Offset	Positive 4500 V -500 V	Set Nebulizer 0.3 Bar Set Dry Heater 180 <c 4.0="" divert="" dry="" gas="" l="" min="" set="" td="" valve="" waste<=""></c>		

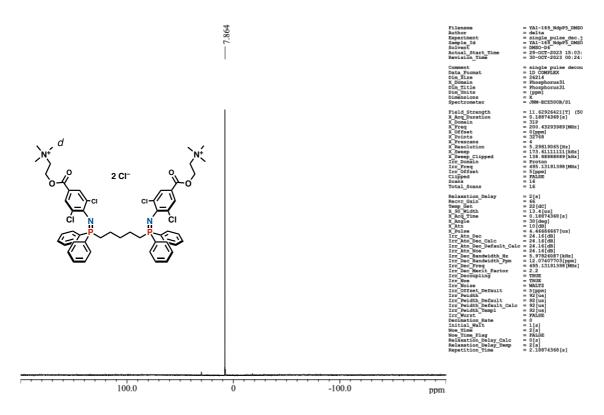

Figure S56. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP4.

Figure S57. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP5**.

Figure S58. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NdpP5**.

Figure S59. ³¹P NMR spectrum (202 MHz, DMSO-*d*₆, 298 K) of **NdpP5**.

Display Report							
Analysis Info Analysis Name	D:\Data\ofcbunsek	i\irai\2023\toyota_lab\yam	Acquisition Date 2023/10/19 10:32:59				
Method Sample Name Comment	esi_posi_low.m NdpP5-		Operator BDAL@DE Instrument micrOTOF 213750	.10321			
Acquisition Par	ameter						
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer 0.3 Bar Set Dry Heater 180 〈C			
Scan Begin Scan End	50 m/z 1500 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas 4.0 l/min Set Divert Valve Waste			

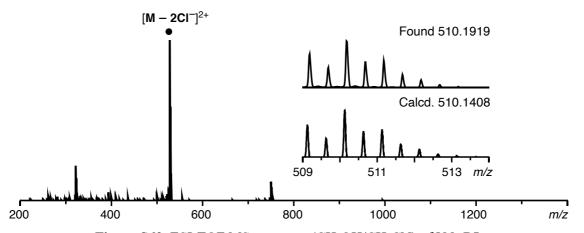
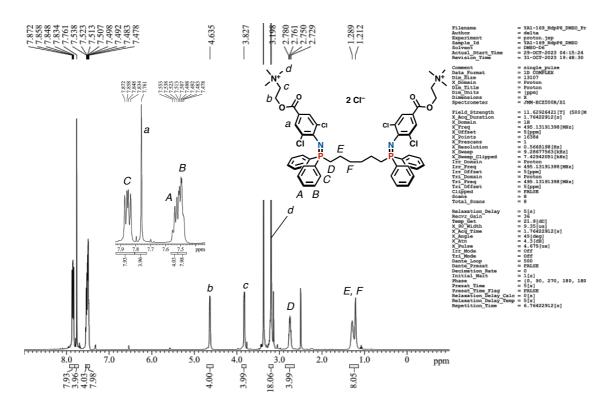
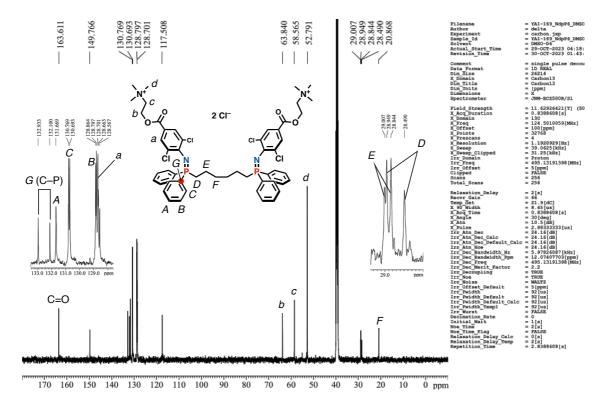




Figure S60. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP5.

Figure S61. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NdpP6**.

Figure S62. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NdpP6**.

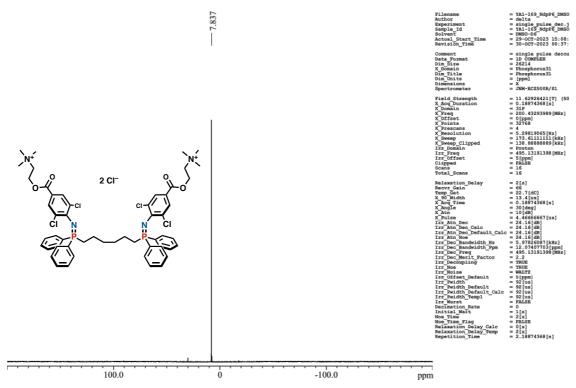
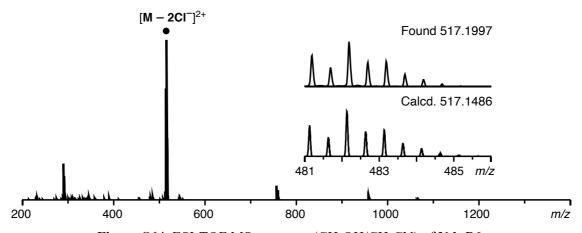
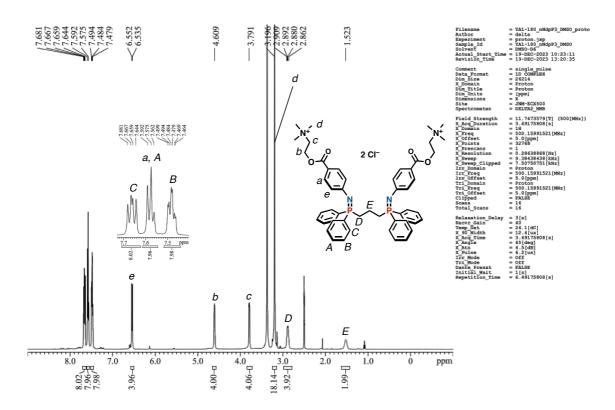
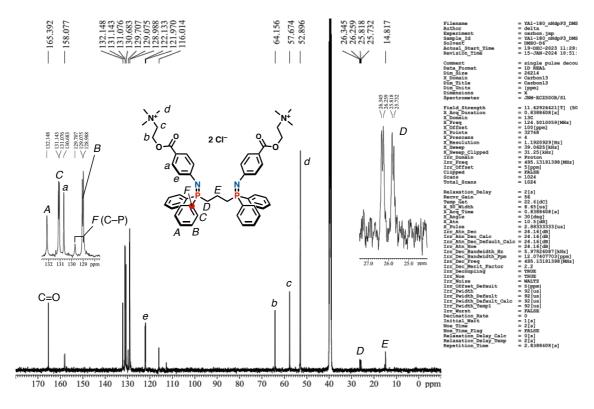


Figure S63. 31 P NMR spectrum (202 MHz, DMSO- d_6 , 298 K) of NdpP6.

Display Report								
Analysis Info Analysis Name	D:\Data\ofcbunsek	i\irai\2023\toyota_lab\yam	Acquisition Date 2023/10/19 10:47:12 0\NdpP6-000001.d					
Method Sample Name Comment	esi_posi_low.m NdpP6-		Operator BDAL@DE Instrument micrOTOF	213750.10321				
Acquisition Par	rameter							
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulizer Set Dry Heater	0.3 Bar 180 ∢C			
Scan Begin Scan End	50 m/z 1500 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas Set Divert Valve	4.0 l/min Waste			

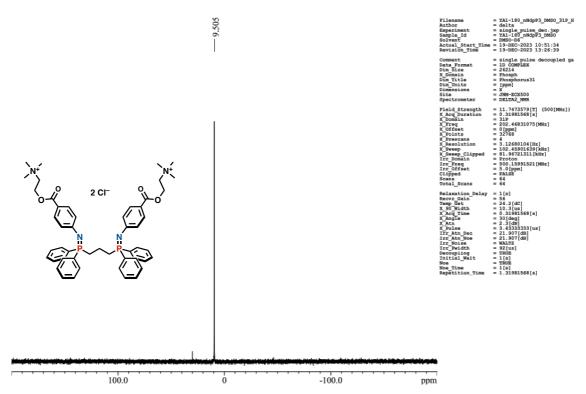

Figure S64. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NdpP6.

Figure S65. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **nNdpP3**.

Figure S66. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **nNdpP3**.

Figure S67. 31 P NMR spectrum (202 MHz, DMSO- d_6 , 298 K) of **nNdpP3**.

TDCMAS ESI-TOF

Analysis Info Analysis Name	D:\Data\ofcbunseki	\irai\2023\toyota lab\akiya	•	2024/01/18 9:43:54		
Method Sample Name Comment	esi_posi_low.m nNdpP3-			Operator Instrument / Ser#	BDAL@DE micrOTOF	213750.10 321
Acquisition Para	ameter					
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulize Set Dry Heat		
Scan Begin Scan End	50 m/z 1300 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas Set Divert Va	4.0 l/n	

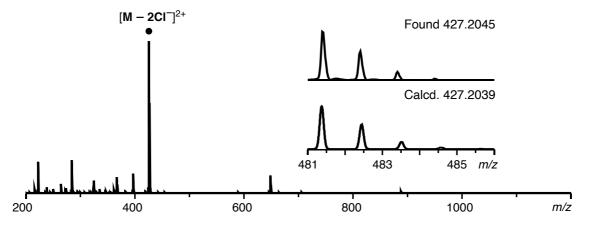
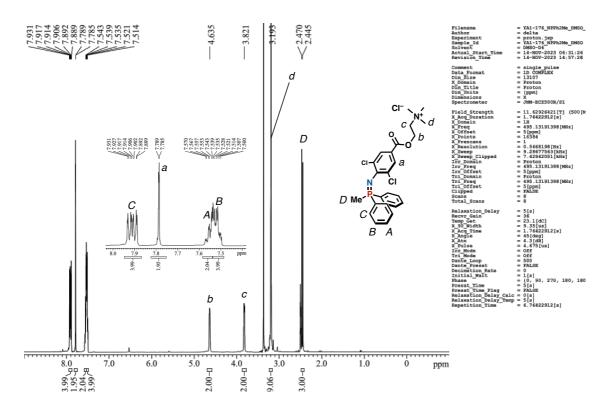
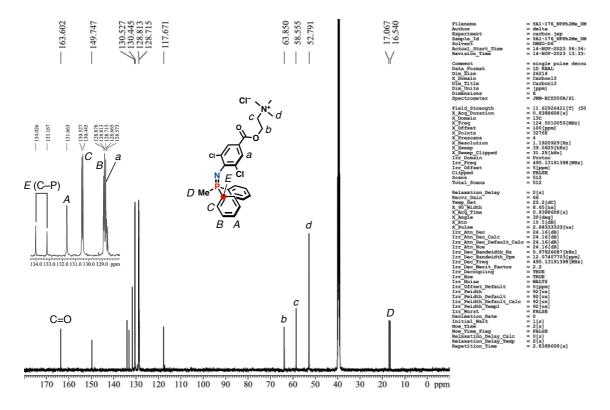




Figure S68. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of nNdpP3.

Figure S69. ¹H NMR spectrum (500 MHz, DMSO-*d*₆, 298 K) of **NPPh2Me**.

Figure S70. ¹³C NMR spectrum (125 MHz, DMSO-*d*₆, 298 K) of **NPPh2Me**.

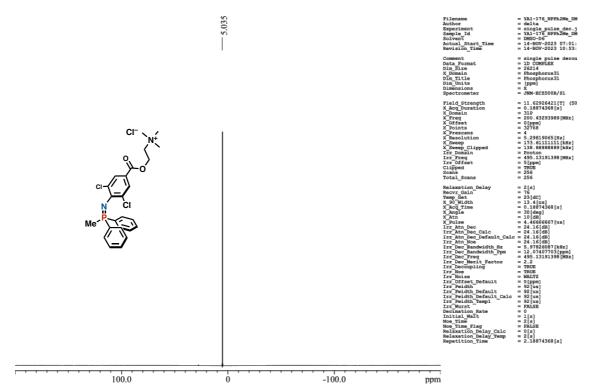


Figure S71. 31 P NMR spectrum (202 MHz, DMSO- d_6 , 298 K) of NPPh2Me.

TDCMAS ESI-TOF

Analysis Info Analysis Name	D:\Data\ofcbunseki\irai\2023\toyota lab\akiyama\240119\NP				2024/01/18 9:59:25	
Method Sample Name Comment	esi_posi_low.m NPPh2Me-	ranzozottoyota_tablatity	ama 1240 1 13 11 1	Operator Instrument / Ser#	BDAL@DE micrOTOF	213750.10 321
Acquisition Par	rameter					
Source Type Focus	ESI Not active	Ion Polarity	Positive	Set Nebulize Set Dry Heat		
Scan Begin Scan End	50 m/z 1300 m/z	Set Capillary Set End Plate Offset	4500 V -500 V	Set Dry Gas Set Divert Va		

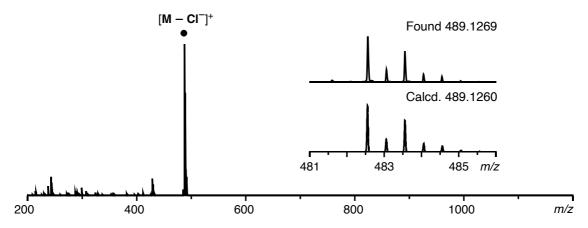


Figure S72. ESI-TOF MS spectrum (CH₃OH/CH₃CN) of NPPh2Me.