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S1: The pore distribution analysis of mussel plaque SEM photos

Figs. S1 and S2 were analysed with additional SEM images to further investigate the pore distribution of large-scale pores 

within mussel plaques. It can be concluded that the large-scale pore radius still follows lognormal distribution. The 

porosity ( ), normalised mean radius ( ) and normalised standard deviation of radius ( ) for large-scale pores within 𝑣𝑙 �̅� ∗
𝑝 �̅� ∗

𝑝

those SEM images are shown in table S1 and S2, respectively. 

Figure S1: Large-scale pore size and location distribution analysis for SEM images of the same mussel. 
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Table S1. Porosity ( ), normalised mean radius ( ) and normalised standard deviation of radius ( ) of simplified  𝑣𝑙 �̅� ∗
𝑝 �̅� ∗

𝑝

large-scale pores within the SEM images of the same mussel.   

Porosity ( )𝑣𝑙 �̅� ∗
𝑝 �̅� ∗

𝑝
Slice 1 33% 0.043 0.012
Slice 2 28% 0.039 0.008
Slice 3 27% 0.041 0.012

Figure S2: Large-scale pore size and location distribution analysis for SEM images of different mussel plaques. 

Table S2. Porosity ( ), normalised mean radius ( ) and normalised standard deviation of radius ( ) for simplified 𝑣𝑙 �̅� ∗
𝑝 �̅� ∗

𝑝

large-scale pores within the SEM images. 

Porosity ( )𝑣𝑙 �̅� ∗
𝑝 �̅� ∗

𝑝
Figure S2a 26% 0.027 0.006
Figure S2b 23% 0.021 0.005
Figure 1e 27% 0.031 0.009
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S2: The simplified process of the pore distribution of the mussel plaque cores 

The porous structure of the mussel plaque is inherently complex, with irregular pores varying significantly in shape and 

size, posing challenges for accurate quantification of porosity and other distribution parameters. To address this, we have 

idealised these irregular pores into circular shapes, enabling a more straightforward approach to measuring key parameters 

such as porosity, pore radius, and the coordinates of pore centres (Fig. S3). This idealisation ensures uniformity in analysis 

and facilitates the application of mathematical models and computational methods. During this process, pores that 

appeared incomplete or have poorly defined boundaries were excluded in order to maintain the accuracy and reliability 

of the measurements. Special attention was given to avoid overlap of pores during the idealisation process, as overlapping 

can lead to incorrect calculations of porosity and pore distribution. Despite the simplification to circular pores, the main 

geometrical features of the mussel plaque are retained, ensuring the pore arrangement remains consistent with the original 

complex structure.

Figure S3: The schematic drawing of the idealisation of the porous structure of mussel plaque cores. 

S3: The Q–Q (quantile–quantile) plots

The Q–Q (quantile–quantile) plot [1], which serves as a probability plot, was drawn in Fig. S4 to compare the probability 

distributions of x and y coordinates of the centers of large-scale pores in those 9 SEM images to a uniform distribution. 
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It can be seen that both x and y coordinates are consistent to a uniform distribution. Therefore, a uniform distribution of 

large-scale pores locations was applied to generate the porous RVEs. 

Figure S4: Q–Q plots (quantile–quantile plot) comparing the x and y coordinates of large pores within the 9 mussel 
plaque SEM photos to a uniform distribution. 
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S4: The size effect study of RVE

Because the random distribution of pores itself has an effect on the stress-strain curve of the RVE, the use of randomly 

distributed pore samples to detect dimensional effects is not applicable. Instead, pores with a radius of 1.12 mm (mean 

value of pore size distribution) were uniformly arranged in RVEs of three different sizes (15x15 mm, 30x30 mm, 60x60 

mm). The porosity of the RVEs of all sizes was 27%, which is the same as before. In order to ensure that the pore spacing 

was equal for each of the three different RVE sizes, a spacing of 3.66 mm was applied (Fig. S5). 

It can be seen from Fig. S6 that the stress-strain curves of the three different sizes of RVEs almost overlap, thus learning 

that the size effect can be neglected in this study. The 30x30 mm RVE size was chosen based on the computational power 

and the similarity of pore numbers. 

Figure S5: Schematic diagram of three different sizes RVEs (60x60 mm, 30x30 mm, 15x15 mm). 

Figure S6: Strain-stress curves of three different sizes RVEs (60x60 mm, 30x30 mm, 15x15 mm). 
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S5: The small-scale pores size effect study for the multi-scale porous RVEs

Sample C in Section 5.2 was selected to regenerate the multi-scale porous RVEs with three different approximate small-

scale pore sizes (0.4 mm, 0.5 mm and 0.6 mm) to understand the size effect on the macroscopic material behaviours of 

multi-scale RVEs. In ABAQUS, Sample C was meshed using triangular elements with three different approximate mesh 

sizes: 0.4 mm, 0.5 mm and 0.6 mm. The 2D elements in the FE models were then removed and the remaining nodes were 

connected using truss elements (T2D2T) as described in Section 3.2 of the original text. This generated three multi-scale 

porous RVEs with approximate small-scale pore size approximations of 0.4 mm, 0.5 mm and 0.6 mm respectively. It is 

noteworthy that the porosities of these three multiscale porous RVEs remain consistent by adjusting the radius of truss 

elements. 

The results show that the size of the small-scale pores within the multi-scale porous RVEs has an insignificant effect on 

the macroscopic material behaviours of multi-scale porous RVEs thereby 0.5 mm was set as the approximate small-scale 

pore size in the simulations (Fig. S7). 

Figure S7: The macroscopic stress-strain curves of multi-scale porous RVEs with different approximate small-scale pore 
sizes: 0.4 mm, 0.5 mm (Sample C’) and 0.6 mm. 
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S6: The derivation of eqn (14)

The following equation can be derived from eqns (12) and (13) in the original text:

�̇� = ∫
Ω

 (∂𝑔(𝑐)
∂𝑐

𝜓�̇� + 𝑔(𝑐)
∂𝜓
∂𝐹

:�̇�)𝑑𝑉       (𝑆6.1)

where  is the rate of change of the deformation gradient, which can be presented as . The �̇�
�̇� =

𝑑
𝑑𝑡

(∇𝑢) = ∇
𝑑𝑢
𝑑𝑡

= ∇�̇�

velocity field represents the rate of change of the displacement field  with respect to time.�̇� 𝑢

Meanwhile, the vector calculus identity for the divergence of a product of a vector field  and a vector field  is shown 𝑎 𝐴

below:

div (𝑎 ⋅ 𝐴) = 𝑎 ⋅ div (𝐴) + 𝐴:∇𝑎       (𝑆6.2)

Therefore, the second term on the right-hand side of eqn (S6.1) can be written as:

∫
Ω

 𝑔(𝑐)
∂𝜓
∂𝐹

:�̇� 𝑑𝑉 = ∫
Ω

 𝑔(𝑐)
∂𝜓
∂𝐹

:∇�̇� 𝑑𝑉 = ∫
Ω

 𝑑𝑖𝑣 (𝑔(𝑐)
∂𝜓
∂𝐹

∙ �̇� )𝑑𝑉 ‒ ∫
Ω

 𝑑𝑖𝑣 (𝑔(𝑐)
∂𝜓
∂𝐹) ∙ �̇� 𝑑𝑉       (𝑆6.3)

It is also known that the equation of the divergence theorem is,

∫
Ω

 ∇ ⋅ 𝐹𝑑𝑉 = ∫
∂Ω

 𝐹 ⋅ 𝑛𝑑𝐴       (𝑆6.4)

Hence eqn (S6.3) can be rewritten as:

∫
Ω

 𝑔(𝑐)
∂𝜓
∂𝐹

:�̇� 𝑑𝑉 = ∫
∂Ω

 𝑔(𝑐)
∂𝜓
∂𝐹

∙ �̇� ∙ 𝑛𝑑𝐴 ‒ ∫
Ω

 (∇ ∙ (𝑔(𝑐)
∂𝜓
∂𝐹)) ∙ �̇� 𝑑𝑉       (𝑆6.5)

Consequently, eqn (S6.1) can be expressed as:

�̇� = ∫
Ω

 (∂𝑔(𝑐)
∂𝑐

𝜓�̇�)𝑑𝑉 + ∫
∂Ω

 𝑔(𝑐)
∂𝜓
∂𝐹

∙ �̇� ∙ 𝑛𝑑𝐴 ‒ ∫
Ω

 (∇ ∙ (𝑔(𝑐)
∂𝜓
∂𝐹)) ∙ �̇� 𝑑𝑉       (𝑆6.6)
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S7: The derivation of eqn (18)

Based on eqn (17) in the original text, the rate of the dissipated energy from crack formation  can be expressed as:�̇�𝑓

�̇�𝑓 = ∫
Ω

 𝐺𝑐(𝑐�̇�
𝑙

+ 𝑙(∇𝑐 ∙ ∇�̇�))𝑑𝑉      (𝑆7.1)

The vector calculus identity for the divergence of a product of a scalar field  and a vector field  is shown below:𝜙 𝐴

∇ ⋅ (𝜙𝐴) = ∇𝜙 ⋅ 𝐴 + 𝜙(∇ ⋅ 𝐴)       (𝑆7.2)

Therefore, the second term on the right-hand side of eqn (S6.1) can be rewritten as:

∫
Ω

 (𝐺𝑐𝑙∇𝑐 ∙ ∇�̇�))𝑑𝑉 = ∫
Ω

 ∇ ⋅ (𝐺𝑐𝑙∇𝑐�̇�)𝑑𝑉 ‒ ∫
Ω

 𝐺𝑐𝑙�̇�(∇ ⋅ ∇𝑐)𝑑𝑉       (𝑆7.3)

Meanwhile, the equation of the divergence theorem is shown below,

∫
Ω

 ∇ ⋅ 𝐹𝑑𝑉 = ∫
∂Ω

 𝐹 ⋅ 𝑛𝑑𝐴       (𝑆7.4)

Thus eqn (S7.3) can be rewritten as follow:

∫
Ω

 (𝐺𝑐𝑙∇𝑐 ∙ ∇�̇�))𝑑𝑉 = ∫
∂Ω

 𝐺𝑐𝑙∇𝑐�̇� ⋅ 𝑛𝑑𝐴 ‒ ∫
Ω

 𝐺𝑐𝑙�̇�(∇ ⋅ ∇𝑐)𝑑𝑉       (𝑆7.5)

Finally, based on eqns (S7.1) and (S7.3), we can obtain the following equation:

�̇�𝑓 = ∫
Ω

 𝐺𝑐�̇�(𝑐
𝑙

‒ 𝑙∇2𝑐)𝑑𝑉 + ∫
∂Ω

 𝐺𝑐𝑙∇𝑐�̇� ⋅ 𝑛𝑑𝐴       (𝑆7.6)
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S8: The comparison of the solid and small-scale porous RVEs 

Following Section 5.3, a small-scale porous RVE with 5% porosity, reflecting the porosity of small-scale pores observed 

in the plaque SEM image (Fig. 1e), was firstly generated to compare with the solid RVE and study the effect of the small-

scale porous structure on material stiffness. It can be seen from Fig. S8 that the solid RVE exhibited significantly higher 

stiffness compared to the small-scale porous RVE. This indicates that even with a relatively small amount of porosity, the 

microstructure can substantially impact the mechanical properties, reducing the stiffness and making the material more 

compliant under tensile loading.

Figure S8: The stress-strain curves of the solid and small-scale porous RVEs. 
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