
Electronic Supplementary Information (ESI) for

Modeling the structure and relaxation in glycerol-silica nanocomposites

Koksal Karakus1, Valeriy V. Ginzburg2, Keith Promislow3, Leela Rakesh4,*

1,4Central Michigan University, Mt. Pleasant, Michigan

2,3Michigan State University, East Lansing, Michigan

Derjaguin Approximation Overview

The Derjaguin approximation1 is a widely used method in colloid and polymer science in which 

the force (or interaction potential) between two particles is related to the disjoining pressure between 

two parallel plates. Here, we illustrate it on the example of two identical spherical particles in a liquid 

medium (polymer melt, polymer solution, or electrolyte); the application to more complex situations 

where the particles have different sizes and/or non-spherical shape can be found in the literature. 

Let the two spheres of radius R be immersed in a liquid medium. If the centers of the two 

spheres are separated by a distance r, the magnitude of the force between the two spheres is F(r). 

Because of the symmetry, the force is “central” (directed along the line connecting the centers of the 

two particles) and can be either repulsive or attractive, depending on r and on the surface chemistry of 

the particles and the composition of the liquid medium. Regardless of what those details are, it can be 

shown that the magnitude of the force is related to the free energy per unit area, W(h),
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and 
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The point of this is that if we know the free energy per unit area for the planar surfaces (which is 

typically easier to calculate), we can easily reconstruct the interaction energies and forces for spherical 

particles of finite radius. This approximation generally works well if the particle radius, R, is significantly 

larger than molecular size, a. Typically, one can take a ~ 1-2 nm (unless the liquid medium is a polymer 

melt with very high molecular weight), so for R > 10 nm, one can indeed disregard the curvature and use 

the one-dimensional flat-plate geometry.

The Analytical Solution for the Density Profile Equation

Let the free energy have a form,
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Here, u(x) is the non-dimensionalized density profile,  and  are model parameters. The free 

energy minimization (Euler-Lagrange equations) is given by,
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giving rise to the following equation for the density profile,
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The solutions of eq (S4) can be sought in the form,
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Here, ak are the complex coefficients (determined from boundary conditions), and k are 

complex wavenumbers that are roots of the equation, 
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The solutions can be written as,
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The second equality in the rhs of eq (S10) specifically applies to condition -- this 2 4 0  

condition ensures that the eigenvalues are complex and the solutions combine oscillations with 

exponential decay function. 

From eq (S10) follows that there are four solutions of eq (S7), and they can be written as,

(S11)1,2,3,4 v iw   



Where the (real positive) coefficients v and w are solutions to the following equations,

2 2

2

2

42
2

v w

vw




 


 




(S12)

Or

2 2

2

2

q q pv

pw
v

 




(S13)

Where  and 
2

q 



2 4
2

p  





The experimentally determined density profile is described by the function, 

(S14a)  ( ) 1 exp( )cos( )u f x a bx cx dx     

for 0 < x < H/2, and 
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for H/2 < x < H.

It is fairly straightforward to see that v = b and w = c. Expressing v and w via  and (eq S13), 

we obtain two equations for  and as functions of b and c. After solving them numerically, we obtain 

the values presented in the main text.



Justification for the Use of the “Naïve” Free-Volume Theory

Here, our goal to demonstrate that the “naïve” (Doolittle) free volume theory can be derived as 

a limiting case of a more complex theory like LCL-CFV (Lipson et al.2) or SL-TS2 (Ginzburg et al. 3) We start 

by assuming that the total specific volume of the material, Vsp, is the sum of the “free volume”, Vf, and 

the “occupied volume”, Vo. Within SL-TS2, they are described by two variables,  (the occupancy) and 

(the solid fraction), 
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The free energy is written as a function of and  , and the logarithm of the  , ,F F T 

relaxation time is written as, . Here, F and Q are some functions whose     ln , ,T Q T  


specific forms can be found elsewhere. 

The equilibrium functions  and can be found by minimizing the free energy F and  eq T  eq T

solving two coupled nonlinear equations for each T. The solutions are unique, i.e., for each T, there is a 

single  and . Moreover, the functions  and are monotonic and decreasing  eq T  eq T  eq T  eq T

with temperature. This means that if one knows , one can immediately determine the corresponding eq

temperature, T, and the corresponding solid fraction, . Thus, the relaxation time can be written as, eq
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If we define the fractional free volume , it is then possible to re-write eq S16 in the 1vf  

form, 
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with . The “naïve” free volume theory then means       1 1 1, ,eqW Q x T Tx x x     

simply that (note that any zero-order term would be automatically absorbed into the  W Kxx 
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The overall change in the specific volume over a 1K temperature change, measured by the 

coefficient of thermal expansion, L, consists of the change in the free volume and the change in the 

occupied volume. Thus, 
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We assume that in the narrow temperature range considered in this study, one can neglect 

higher-order terms and assume that both o (the coefficient of thermal expansion for the occupied 

volume) and f (the coefficient of thermal expansion for the free volume) can be considered constant. 

Thus,  
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where we assumed that the free volume as a function of temperature can be expressed as a 

linear function, 
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Equation S21 is approximately valid in the vicinity of T = Tg, way above T0 – we expect it to break 

down as T  T0, but it is not relevant for the current analysis. 

Combining eqs S20 and S21, we obtain for the equilibrium relaxation time of bulk glass-formers 

close to Tg,
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Here, 
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Within the “naïve” free volume theory, we assume that , leading to eq 9a in the main tot vf f

text and all the subsequent estimates. Thus, at least for the bulk materials in the narrow temperature 

range near T = Tg, the predictions of the “naïve” free-volume theory would coincide with those of more 

advanced ones. The differences become pronounced only as one attempts to describe the wider 

temperature ranges and/or include the influence of pressure.

When generalizing to inhomogeneous systems, like films and nanocomposites, we make an 

additional implicit assumption – that as we force a local change in the free volume, fv, the change in the 

occupied volume, fo, would be given by, . Within SL-TS2, we can justify this o
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assumption by saying that increasing the void fraction leads to the corresponding increase in the liquid 

fraction; similar arguments can be advanced using LCL-CFV.

Obviously, the above reasoning applies only if the material is in equilibrium (i.e., above the glass 

transition temperature) and probably only in a narrow temperature range (where the function Q can be 

linearized). We hypothesize that these conditions are satisfied for the experiments analyzed here.

The Number of Layers in a Cooperatively Rearranging Region

In the main text, we assumed that a cooperatively rearranging region (CRR) is comprised of two 

layers. Here, we consider scenarios where one CRR includes three or four layers. The “normalized 

smoothed density” profiles are plotted in Figure S1 below. It can be seen that there is little difference 

between the “two-layer” and “four-layer” models. The “three-layer” model is obviously different as the 

first element would have two maxima and one minimum, the second would have one maximum and 

two minima, and so on – so the resulting “smoothed density” would exaggerate, rather than smoothen, 

the initial layering. We will use the two-layer model, but expect the four-layer model to work equally 

well.



Figure S 1. Normalized smooth density profiles for the two-layer (blue), three-layer (orange), and four-layer CRRs.
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