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1 Spectral method for orientational discretization
MPC requires a finite-dimensional discrete time system. Here, we explain how we discretize the Smoluchowski
equation to obtain a finite-dimensional system. We start with the Smoluchowski equation describing ABPs
actuated by an input field Ω(x, θ, t) confined between two plates Eqs. (1) to (4).

∂P

∂t
+∇ · j+ ∂

∂θ
jθ = 0 (1)

j = U0qP −DT∇P (2)

jθ = ΩP −DR
∂

∂θ
P (3)

n · j|walls = 0 (4)

The distribution P and input field Ω are periodic in θ. Thus, we decompose P and Ω into Fourier series, i.e.,

P (x, θ, t) =
1

2π

∑
k

Pk(x, t)e
−ikθ (5)

Ω(x, θ, t) =
1

2π

∑
k

Ωk(x, t)e
−ikθ (6)

i is the imaginary number. Note that P0 is the number density, and the kth orientational moment can be
constructed from Pk. For example, for the polar order, m =

[
Re(P1) Im(P1)

]T. Details on converting
Fourier expansions to Cartesian expansions for orientation moments, e.g., polar order m, nematic order
Q, is described in te Vrugt and Wittkowski 1 . Likewise for the input field, Ω0 is the isotropic induced
angular velocity which can be observed in chiral active matter systems2;3. Ω1 is the induced angular velocity
that orients the particles along the field direction and can be thought of as a magnetic field orienting the
particles4. Ω2 is the induced angular velocity that aligns the particles with the field axis which has been
done by controlling liquid crystal alignment5. Substituting the Fourier series into Eqs. (1) to (4) and taking
a Fourier transform in θ yields equations describing the dynamics of the Fourier modes Pk(x, t).

∂Pk

∂t
+∇ · jk − ik

2π

∑
k̂

Pk−k̂Ωk̂

+ k2DRPk = 0 (7)

n · jk|walls = 0 (8)

jk =
1

2
U0

[
(Pk+1 + Pk−1)

−i (Pk+1 − Pk−1)

]
−DT∇Pk (9)
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For this paper, we focus on the input field that orients particles, i.e.,

Ω(x, θ, t) =
1

2π
(Ωy cos(θ) + Ωx sin(θ)) (10)

Ω1 = Ωy + iΩx (11)

Note that the orienting field vector Ĥ(x, t) =
[
Ωx Ωy

]T . We substitute Eq. (10) for Ω in Eq. (7) and obtain

∂Pk

∂t
+∇ · jk − ik

2π
(Pk−1Ω̄1 + Pk+1Ω1) + k2DRPk = 0 (12)

Ω̄1 is the complex conjugate of Ω1. We make a closure approximation by truncating the Fourier series at
kmax modes.

Since we assume the input and initial condition is uniform in y, the solution is also uniform in y. Thus,
we focus on the spatial discretization in x. Due to the zero-flux boundary conditions at the walls, we
use a Gauss-Legendre pseudospectral method to discretize the spatial domain. Note that other methods
such as finite differences or finite elements can be used, but we choose the pseudospectral method for its
accuracy and efficiency. We could also choose different basis functions, e.g., a Fourier basis or Chebyshev
polynomial basis. Legendre polynomials are chosen to handle both boundary layers at the walls that arise
from ABPs accumulating at walls and the interior boundary layers that arise from the actuator orienting
particles. With a pseudospectral discretization, we enforce the governing equations or boundary equations
at collocation points xc we choose to be roots of the Legendre polynomials and the end points. Later, when
we perform density estimation, we evaluate the density at the collocation points, which projects the density
to the basis functions. Finally, we step forward in time using a numerical ODE solver, namely a third-order
orthogonal collocation scheme.

2 Kernel Density Estimation and evaluation at collocation points
To apply feedback control, we require an estimate of the distribution projected to the basis functions. Given
the x-positions xi and the orientations θi of the particles, we estimate the kth-mode of the density distribution
at the collocation points xc using weighted Kernel Density Estimation (KDE).

Pk(xc) ≈
1

N

N∑
i=1

K(xc − xi) exp(ikθi) (13)

K(x) =
1√
2πσ

exp

(
− x2

2σ2

)
(14)

σ is the bandwidth of the kernel. Note that P (x, θ) can be constructed from Pk(x) using Eq. (5).

3 Model verification
Recall we made a closure approximation by assuming Pk = 0, ∀|k| ≤ kmax which introduces model errors. We
can verify our model by comparing with theory for unconfined systems. We focus on the nondimensionalized
average steady-state velocity component in the direction of the applied field, ⟨u∗

∥⟩P . This quantity represents
the average velocity of the particles along the orienting direction, scaled by the reorientation time τRand run
length ℓ. In their analytical work, Takatori and Brady 6 derived ⟨u∗

∥⟩P as a function of the nondimensional
field strength

∣∣Ω1/τ
−1
R

∣∣ for particles in three dimensions. A similar analysis in two dimensions yields the
following relation

⟨u∗
∥⟩ =

I1(
∣∣Ω1/τ

−1
R

∣∣)
I0(
∣∣Ω1/τ

−1
R

∣∣) (15)

We compare Eq. (15) to our model by orienting the particles in the unconfined direction y, i.e., we set Ωy to a
constant value and Ωx to zero. The nondimensional velocity component along the y direction is ⟨cos(θ)⟩ and
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Figure 1: Comparing model and analytical average velocities along orienting direction as a function of
orienting field strength

thus, can be obtained by normalizing the imaginary part of the first orientational moment by the number
density ⟨u∗

∥⟩ = my/n. We solve Eq. (12) for the steady state solution for various orienting field strengths
and kmax values. Fig. 1 shows the comparison between Eq. (15) and the model ⟨u∗

∥⟩ at x = 0. At low field
strengths (|Ω1| < 1τ−1

R ), all the models’ parallel velocity components agree with Eq. (15). The kmax = 2
model deviates from Eq. (15) at less than |Ω1| = 2τ−1

R and the kmax = 4 starts deviating from Eq. (15) at
around |Ω1| = 4τ−1

R . We set our system to have a input constraint on the maximum field strength

|Ω1|∞ ≤ Ωmax = 3τ−1
R (16)

so we remain in the region where the kmax = 4 model agrees with the steady state analytical solution.

4 Unlimited actuation
To get a sense of the system’s behavior, consider the unlimited actuation case, i.e. Ωmax = ∞. For unlim-
ited actuation, the particles align with the field instantaneously and thus, rotational diffusion is negligible.
However, translational diffusion is still present. Consider the density control example where we first gather
the particles into the center, and let us put a step function in Ωx directing particles to the center.

This results in an internal boundary layer about the origin, giving the leading order solution

n(x) =

{
ce(ℓ/δ)

2x x < 0

ce−(ℓ/δ)2x x > 0

c :=
1

2
(ℓ/δ)2

(
1− e

−W
2 (ℓ/δ)2

)−1

For the parameters of interest (W = 10ℓ, (ℓ/δ)2 = 10), the number density n(x) is shown in Fig. 2.
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Figure 2: Number density for unlimited actuation.

5 Dynamic set point tracking
To illustrate the capabilities of our framework, we use MPC to steer a BD simulation to track a dynamic
set point xsp(t) where we want the particles to gather. MPC is used to find the input field Ωx(x, t) that
achieves this. We also compare MPC to a heuristic solution.

Our stage cost is formulated as follows.

L = LP + LΩ

LP (P, xsp(t)) := c1

〈
(x− xsp(t))

2
〉

LΩ(Ωx(t),Ωx(t−∆)) := c2

∣∣∣∣∂2Ωx

∂x2

∣∣∣∣2 + c3 |Ωx(t)− Ωx(t−∆)|2
(17)

LP penalizes the expected square distance between the particles’ x-position and the set point. LΩ penalizes
both controller variation in space and time by adding a cost to curvature in x and a cost to the change in
input field. c1, c2, and c3 are weights that determine the importance of each term. We prioritize set point
tracking so we set c2, c3 ≪ c1.

We compare MPC to a heuristic controller that orients particles towards the set point, i.e.,

Ωx(x, t) =


Ωmax, x < xsp(t)

0, x = xsp(t)

−Ωmax, x > xsp(t)

(18)

Ωy(x, t) = 0 (19)

The dynamic set point function is chosen to be the following:

1. The set point starts at xsp(t) = 0ℓ.

2. At t = 15τR, the set point jumps to xsp(t) = −2.5ℓ.

3. The set point follows a cosine function with amplitude a = 2.5 and period b = 2.

4. The simulation ends at t = 51τR.

More formally, the set point is defined as

xsp(t) =


0, t < ts

−a cos ((t− ts)/b) , ts ≤ t ≤ ts + 2πb

0, ts + 2πb ≤ t ≤ tf

(20)
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Figure 3: Dynamic set point tracking with a BD simulation using a heuristic policy and MPC. (a) and (b)
show the number densities as the particles track the given set point for the heuristic and MPC solutions,
respectively. (c) and (d) show the controller inputs to track the set point. (e) shows a comparison between
the heuristic and MPC solutions’ stage state cost, i.e., how far the system is from the set point along with
an integrated state cost.

a and b are the amplitude and period, respectively, of oscillating portion of the dynamic set point. ts is the
time when the oscillation starts. tf is the time when the simulation stops. We choose the period b such that
the set point’s maximum velocity is faster than the average translational velocity with a saturated controller,
i.e., Ωx(x) = Ωmax. The set point is illustrated with the dashed red line in Fig. 3a. Note that the maximum
velocity occurs when xsp(t) = 0ℓ. Thus, the controller will need to anticipate the limitation of the actuator
and orient the particles in front of the set point.

The heuristic control results are shown in Fig. 3(a-b) and MPC results are shown in Fig. 3(c-d). The
colors in Fig. 3(a, c) show the particles number density evolution P0(x, t) throughout the simulation as a
function of space and time; The dotted line shows the dynamic set point xsp(t) and the solid lines show the
expected value of the particle position ⟨x⟩. Fig. 3(b, d) colors show the actuator Ωx(x, t) as a function of
space and time; Fig. 3e compares the two controllers state cost throughout the simulation and reports the
average state cost (1/tf )

∫ tf
0

LP (t) dt. We do not compare the control costs since the heuristic controller has
undefined curvature at xsp.
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The distributions in Fig. 3(a, c) show both controller track the set point. At the start, the particles are
at steady state with Ωx = 0 and both controllers orient the particles to the center, which can be seen by the
probability density starting off on the edges at x = ±5ℓ and accumulating at x = 0. At t = 15τR, the set
point changes to the cosine function and the particles’ probability distribution functions follow the set point
until the end of the simulation. However, Fig. 3a shows the heuristic controller’s expected position ⟨x⟩ lags
behind the set point, especially where the set point changes the fastest, e.g., t = 15τR when the set point
jumps and xsp(t) = 0ℓ when the set point speed is at its maximum. Fig. 3b shows that MPC anticipates
changes in the set point and optimizes the actuator to keep the particles expected position close to the set
point. A good example occurs at t = 15τR where the set point jumps from xsp(t) = 0ℓ to xsp(t) = −2.5ℓ.
As defined by the heuristic policy, Ωx(x, t) only reacts to the set point change, whereas MPC anticipates the
change in the set point and begins to move the particles to x = −2.5ℓ before the set point change arrives.
Before the set point change, MPC incurs a higher cost for departing from the set point. However, after the
set point change, MPC does not suffer from as large as a jump in the stage cost compared to the heuristic
solution.

Additionally, when the set point speed is at its maximum, the MPC controller keeps the expected particle
position closer to the set point compared to the heuristic policy. While the set point is moving slow, i.e.,
when ∂

∂txsp(t) ∼ 0, MPC orients particle such that ⟨x⟩ is ahead of the set point. Then, when the actuator
cannot match the needed velocity to match the set point velocity due to the input constraints, the set point
xsp(t) catches up to expected position ⟨x⟩ and the state cost remains relatively smaller compared to the
heuristic controller. The heuristic controller input, as shown in Fig. 3c, as prescribed, has a step at the
set point. As seen in Fig. 3c, the MPC actuator’s changes in space and time appear to be reasonable and
not overly aggressive, given the task. From Fig. 3e, we can see the advantages of using MPC versus the
heuristic controller. At first, both controllers have the same state stage cost. Near t = 15τR, MPC incurs a
higher state cost to move the particles to forecasted set point while the heuristic controller continues keeping
particles in the center. Thus, when the set point changes from xsp(t) = 0ℓ to xsp(t) = −2.5ℓ, the heuristic
controller has the particles at the center and suffers from a large state cost. We can also see the result
of MPC anticipating where the set point is going as MPC maintains the state cost lower compared to the
heuristic solution. As a result, MPC has a lower average state cost. This example demonstrates the benefits
of MPC compared to using a heuristic controller.

6 Stage cost for splitting particles

0.00

0.05

0.10

0.15

S
ta

te
co

st
(L

P,
1)

Set point change times

0 25 50 75 100 125
Time t/τR

0

2

C
o

n
tr

o
l

co
st

(L
Ω
,1

) ×10−4

(a)

(b)

Figure 4: Stage cost for splitting particles. Dashed black lines denote times when the set point changes. (a)
shows the state cost LP1

and (b) shows the control cost LΩ1

.
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To split the particles into two groups, we use the following stage cost

L1 = LP,1 + LΩ,1

LP,1(P (t),xsp,1(t)) := c1

(〈
(x− x−(t))

2
〉
x<0

+
〈
(x− x+(t))

2
〉
x>0

)
+ c2 (n(x < 0)− rsp(t)n(x > 0))

2

LΩ,1(Ωx(t),Ωx(t−∆)) := c3

∣∣∣∣∂2Ωx

∂x2

∣∣∣∣2 + c4 |Ωx(t)− Ωx(t−∆)|2

xsp,1(t) :=
[
x−(t) x+(t) rsp(t)

]T
The stage cost still penalizes the expected square distance between the particles’ and the set points, but now
we have two set points x−(t) and x+(t). Thus, for particles with position x < 0, we penalize the expected
square distance between the particles and x− and for particles with position x > 0, we penalize the expected
square distance between the particles and x+. We also penalize the ratio of particles in the two groups using
the ratio set point rsp(t) that we want the particles to split into. The control cost LΩ,1 = LΩ. c1, c2, c3,
and c4 are again the weights. c4 is set to be larger than c1 to prioritize the particles maintaining the desired
ratios. c2 and c3 are kept small to prioritize the state cost. Fig. 4 shows the state and control stage costs.

As shown in Fig. 4a, the state cost LP,1 initially drops as the particles are gathered to the center. At
t = 10τR, the set point changes to split the particles into two groups which causes the state cost to dip then
increase back to a steady value. Subsequently, every time there is a ratio set point change, the state cost
increases before the particles reach the desired ratio and the state cost stabilizes. The control cost LΩ,1 in
Fig. 4b shows the control actions are not penalized very heavily. The control cost related to the curvature of
the input field is small and most of the variation in the control cost is due to the change in the input field.
Thus, every set point change, the control cost increases as the controller needs to change the input field.

7 Stage cost for orientational moment control
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To control the y component of the velocity to fit to a sine wave and split the particles into two groups, we
use the stage cost for splitting particles, with the addition of the set point y∗-velocity.

L2 = LP,2 + LΩ,2

LP,2(P (t),xsp,2(t)) := c5

(〈
(x− x−(t))

2
〉
x<0

+
〈
(x− x+(t))

2
〉
x>0

)
+c6 (n(x < 0)− n(x > 0))

2

+c7

∣∣∣∣my(x)

n(x)
− vsp(t) sin(πx/W )

∣∣∣∣2
LΩ,2(Ωx(t),Ωx(t−∆),Ωy(t),Ωy(t−∆)) := c8

(∣∣∣∣∂2Ωx

∂x2

∣∣∣∣2 + ∣∣∣∣∂2Ωy

∂x2

∣∣∣∣2
)

+c9

(
|Ωx(t)− Ωx(t−∆)|2 + |Ωy(t)− Ωy(t−∆)|2

)
xsp,2(t) :=

[
x−(t) x+(t) vsp(t)

]T
The stage cost now penalizes the expected deviation of the y∗-velocity from the set point function vsp(t) sin(πx/W ).
In addition, we penalize the curvature and change in time of the y-component of the input field. In Movie S2,
we show that we

1. Accumulate particles into center and initialize vsp = 0, i.e., no polar order in y.

2. Split particles into two equal groups centered at x+ and x−.

3. Set vsp = 0.4 so the y∗-velocity fits to 0.4 sin(πx/w).

4. Repeat step 3, but with a vsp = −0.4.

5. Set vsp = 0.

Fig. 5 shows the state and control stage costs. Up to t = 25τR, the costs are identical to the splitting
particles example. At t = 25τR, the set point changes to vsp = 0.4 and the state cost slightly decreases as
the particles’ velocity matches the set point function. Furthermore, the controller is able to concentrate the
particles slightly more at x− and x+ using Ωy. Before applying Ωy, at x = x±, Ωx,Ωy = 0. Thus, there is
no input field at the set points to suppress rotational diffusion. When Ωy is used to match the y∗-velocity
to the set point function, the rotational diffusion is suppressed which results in the slight concentration of
particles at x±, slightly decreasing the state cost. At t = 60τR, the set point changes to vsp = −0.4 and the
state cost increases temporarily before returning to the same value. At t = 95τR, the particle velocity set
point is 0, and we return to two groups of particles with little polar order in y.
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8 Movie descriptions
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Movie S1: MPC for splitting population and juggling densities. (a) shows a subset of the particles in the BD
simulation. The particles are colored by their orientation as indicated by the legend. The target positions
are marked by the orange lines. (b) shows the KDE number density in blue; (c) shows the input field Ωx;
(d) shows the achieved fraction of particles with position x < 0 in blue and the target fraction in orange.
The black horizontal line indicates the time of the simulation.
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Movie S2: MPC for splitting population and controlling y∗-velocity. (a) shows a subset of the particles in
the BD simulation. The particles are colored by their orientation as indicated by the legend. The target
positions are marked by the orange lines. (b) shows the KDE number density in blue; (c) shows the KDE
y∗-velocity in blue along with the target y∗-velocity in orange; (d) shows the input field Ωx; (e) shows the
input field Ωy.
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Movie S3: Heuristic control for dynamic set point tracking. (a) shows a subset of the particles in the BD
simulation. The particles are colored by their orientation as indicated by the legend. The target position is
marked by the orange line. (b) shows the KDE number density in blue. (c) shows the input field Ωx from
Eq. (18).
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Movie S4: MPC for dynamic set point tracking. (a) shows a subset of the particles in the BD simulation.
The particles are colored by their orientation as indicated by the legend. The target position is marked by
the orange line. (b) shows the KDE number density in blue. (c) shows the input field Ωx.
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