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1. EXPERIMENT

A robotic bug (HEXBUG micro ant, 5cm × 1.3cm) (Fig. 3a in main text) powered by battery is used as a self
propelled random walker. We characterized the motion of our random walker (RW) in different setups. First we
consider a relatively large circular confinement of diameter 117cm (See Fig.∼3b in main text). MSD (Fig. 1c in
main text) are calculated for approximately 25 trajectories with the RW moving outward from the center of the
confinement to the boundary. The MSD of the bug has a superdiffusive behavior for shorter timescale with t∼1.8
which becomes subdiffusive over longer timescales with slopes between 0.5 and 1. To construct regions with a lower
diffusion coefficient, we used wooden pegs of diameter 1cm arranged randomly at a packing fraction of 6% to constitute
a crowded barrier region. A sample trajectory and MSDs are shown in Fig.(3e,f) in main text. The MSD varies with
a lower slope t∼1.5 over a longer time compared to the empty case. The transport in this case is slowed down as
compared to the free case due to repeated collision with the pegs, with the mean time to reach the boundary being
8.63± 0.49sec, as compared to a mean time of 3.95± 0.39sec in the absence of barriers (Fig.3g in main text). The 6%
packing fraction for the crowded region was determined experimentally based on the ease of turning of the robotic
bug. Higher packing density resulted in the bug getting stuck between these crowders. We use this same density of
pegs to construct rectangular barrier regions of dimensions 76cm × 27cm (Fig. S1). For these rectangular barriers,
the MFPT is about 2.5 times larger than for equivalent empty regions (Fig.3h in main text)

In our main experiments we had a rectangular length of dimension 180cm× 76cm covered by an alternate barrier
and empty regions. Two types of barrier regions are studied : entropic and energetic. For the entropic barriers,
the pegs at 6% density filled a region of width a = 20 cm. Energetic barriers were made using styrofoams with 5
randomly-cut tunnels of size 3cm. This tunnel size (slight larger than the HEXBUG) allows the RW to pass through
in a near instantaneous manner (Suppl Fig. S2(a)). For experimental barrier widths a = 20cm, the passage times
were ≲ 1s. Further, we also quantified the number of attempts before the RW successfully enters a tunnel, which is
indicative of hopping probability accross the energetic barrier (Suppl Fig. S2(b)). Note that statistical fluctuations
are quite high due to the fact that first passage time distributions in confined spaces are typically exponential tailed.
As is expected for an exponential distribution, the average is comparable to the standard deviation. Therefore to
obtain a reliable estimate of MFPT, an optimum number of trials had to be chosen. We observed that beyond 60-65
trials, the MFPTs were converging to a steady value. Hence we used 100 trials for each setup. For energetic barriers,
the slight increase in MFPT beyond a/b > 2 (Fig. 3d in main text), is an artefact of the finite size of our experimental
setup. Around this width of the empty region (b < 9 cm), the dimensions of the RW become comparable to the width
of the empty regions, and although the RW can still move, we do observe some significant restrictions in its turning
behavior. The RW has a propensity to move preferentially only along the length of these narrow empty regions,
without being able to turn randomly along the width - thereby increasing the overall MPFT. Since this behavior is
not observed at any of the higher widths, this limitation of the system size is the cause for the higher MFPT values
for a/b > 2.

Fig. S1. (a) Sample trajectory of RW in empty region of dimensions 76 × 27cm. (b) Sample trajectory through obstacles of
diameter 1 cm in a region of width 76 × 27 cm.

.
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Fig. S2. (a) Mean First Passage Time (MFPT) to traverse the barrier (tunnel) regions for the case of energetic barrier. The
times increase roughly linearly with the width of the barrier region, indicating ballistic transport through the tunnels, as
expected. (b) The number of times the RW collides with the barrier interface before it successfully enters the barrier (tunnel)
region for the case of energetic barriers. This is a intrinsic property of the barrier, and is experimentally seems to be independent
of the width of the barrier regions, as expected.

2. EXPLICIT ANALYTIC RESULTS

2.1 ABSORBING BOUNDARY AT r = r0

In the main manuscript we have derived MFPT for the case when absorbing boundary is located at r = R and
reflecting boundary at r = r0. We now derive the opposite scenario where absorbing boundary is at r = r0 and
reflecting boundary is at r = R. Therefore, the boundary conditions in this case is given by,

∂⟨T2n+1⟩
∂r

∣∣∣∣
R

= 0, and ⟨T1⟩|r0 = 0 (1)

From the above Eq. it is easy to obtain,

An+1 = −Rd

d
(2)

and B1 =

{
− r20

2d − A1r
2−d
0

2−d , for d ̸= 2

− r20
2d −A1 ln r0, for d = 2

(3)

The matching conditions at barrier interfaces (Eqs. 6-9 and Eqs. 18-19 of the main text for entropic barriers and
energetic barriers respectively) are independent of the choice of boundary conditions and hence the recursion relations
given by Eqs. 12, 13, 14 and Eqs. 20, 21, 22 are still valid in this scenario.

Therefore, in this case , the MFPT of a diffusing particle starting from the reflecting boundary can be written as,

τ = ⟨T2n+1⟩|R =

− 1
D1

[
R2

2d + An+1R
2−d

2−d +Bn+1

]
, for d ̸= 2

− 1
D1

[
R2

2d +An+1 lnR+Bn+1

]
, for d = 2

(4)
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Fig. S3. Comparison of MFPT in 2D and 3D for two opposite set up. Panels (a) and (b) compares the results for entropic
barriers when the absorbing boundary is at r = R and r = r0 respectively for D1/D2 = 8. Panels (c) and (d) shows the results
for (D1/dvq) = 50000 when the absorbing boundary is at r = R and r = r0 respectively. A zoomed in version of the MFPT
curve in 3D for absorbing boundary at r = r0 is shown in panel (d) inset. The other chosen parameters are a = 20, R = 2001
and r0 = 1.

where for entropic barriers,

Bn+1 =


B1 +

∑n
i=1

(s−1)
2d

[
r22i − r22i−1

]
+
∑n

i=1
(s−1)
(2−d)A1

[
r2−d
2i − r2−d

2i−1

]
for d ̸= 2

B1 +
∑n

i=1
(s−1)
2d

[
r22i − r22i−1

]
+
∑n

i=1(s− 1)A1 ln
(

r2i
r2i−1

)
for d = 2

and for energetic barriers,

Bn+1 =



B1 −
∑n

i=1
1
2d

[
r22i − r22i−1

]
−
∑n

i=1 Air
1−d
2i−1

[
ai

(2−d) −
D1

vq

]
+
∑n

i=1
air2i

d(2−d) +
∑n

i=1
D1r2i−1

dvq
, for d ̸= 2

Bn+1 −
∑n

i=1
1
2d

[
r22i − r22i−1

]
−
∑n

i=1 Air
1−d
2i−1

[
ln r2i
r1−d
2i

− ln r2i−1

r1−d
2i−1

− D1

vq

]
+
∑n

i=1
ai ln r2i
dr1−d

2i

+
∑n

i=1
D1r2i−1

dvq
, for d = 2
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2.2 ANALYTICAL CALCULATIONS FOR ONE-DIMENSION

While we present the general analytical formalism in d-dimensions in the main manuscript, for simplicity, we also
explicitly solve the 1D case here.

2.2.1 ENTROPIC BARRIERS

Let us consider n barriers each of width a are distributed in region x = 0 and x = L.
The mean gap between two consecutive barriers is given by

b =
L− na

n+ 1
(5)

The boundary points of ith barrier are denoted by x2i−1 and x2i which can be expressed as

x2i−1 = b+ (i− 1)(a+ b) i ∈ (1, n)

x2i = i(a+ b) i ∈ (1, n) (6)

The MFPT in two regions obey

D1
∂2⟨T2i−1⟩

∂x2
= −1 i ∈ (1, n+ 1) (7)

D2
∂2⟨T2i⟩
∂x2

= −1 i ∈ (1, n) (8)

which has solutions

⟨T2i−1(x)⟩ = − 1

D1

[
x2

2
+Aix+Bi

]
i ∈ (1, n+ 1) (9)

⟨T2i(x)⟩ = − 1

D2

[
x2

2
+ Cix+ Ei

]
i ∈ (1, n) (10)

where Ai, Bi, Ci, Ei are the integrating constants.
The boundary conditions of the lattice boundaries are given as,

∂x < T1 >x=0 = 0 → reflecting boundary (11)

< T2n+1 >x=L = 0 → absorbing boundary (12)

The continuity MFPT at x2i−1 and x2i gives,

⟨T2i−1⟩x2i−1 = ⟨T2i⟩x2i−1 i ∈ (1, n) (13)

⟨T2i⟩x2i = ⟨T2i+1⟩x2i i ∈ (1, n) (14)

Now the hopping dynamics that governs the motion can be written as,

⟨T2i−1⟩x2i−1
=

1

p+ q
+

p

p+ q
⟨T2i−1⟩−δ+x2i−1

+
q

p+ q
⟨T2i⟩δ+x2i−1

(15)

⟨T2i+1⟩x2i
=

1

p+ q
+

p

p+ q
⟨T2i+1⟩δ+x2i

+
q

p+ q
⟨T2i⟩−δ+x2i

(16)

Fig. S4. Schematic of the system with n entropic barriers. The gap regions are denoted by blue and barriers are denoted by
red. The boundary points of the ith barrier are denoted by x2i−1 and x2i. ⟨Ti⟩ denotes the mean average time for the particle
to reach x = L starting from the ith region.
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Now from Eq.15 we can write,

(p+ q)⟨T2i−1⟩x2i−1 = 1 + p⟨T2i−1⟩−δ+x2i−1 + q⟨T2i⟩δ+x2i−1

⇒ p
[
⟨T2i−1⟩x2i−1 − ⟨T2i−1⟩−δ+x2i−1

]
= 1 + q

[
⟨T2i⟩δ+x2i−1 − ⟨T2i−1⟩x2i−1

]
Using Eq.13 one can rewrite the above equation as,

p
[
⟨T2i−1⟩x2i−1

− ⟨T2i−1⟩−δ+x2i−1

]
= 1 + q

[
⟨T2i⟩δ+x2i−1

− ⟨T2i⟩x2i−1

]
pδ
[
⟨T2i−1⟩x2i−1 − ⟨T2i−1⟩−δ+x2i−1

]
= δ + qδ

[
⟨T2i⟩δ+x2i−1 − ⟨T2i⟩x2i−1

]
Now taking δ → 0 we get,

pδ2∂x⟨T2i−1⟩x2i−1
= qδ2∂x⟨T2i⟩x2i−1

⇒ D1∂x⟨T2i−1⟩x2i−1
= D2∂x⟨T2i⟩x2i−1

(17)

Similarly from Eq.14 and Eq.16 one can write,

D2∂x⟨T2i⟩x2i = D1∂x < T2i+1 >x2i (18)

Eqs.11,12,17 and 18 constitutes the boundary conditions for Eqs.9 and 10. From Eq.11 we have,

A1 = 0 (19)

Now, using Eq.17 and Eq.18 respectively we have,

Ci = Ai (20)

Ai+1 = Ai (21)

Combining the Eqs.19,21,20 we get,

Ai = Ci = 0 ∀i = {1, n+ 1} (22)

Now from Eq.13 we have,

Bi = (s− 1)
x2
2i−1

2
+ sEi (23)

where s = D1/D2.
Using Eq.14 we have,

Bi+1 = (s− 1)
x2
2i

2
+ sEi (24)

Combining Eqs.23 and 24 we get,

Bi+1 = Bi +
(s− 1)

2

[
x2
2i − x2

2i−1

]
(25)

Now from Eq.12 we have,

Bn+1 = −
x2
2n+1

2
= −L2

2
(26)

Hence using Eq.25 we can write,

B1 = Bn+1 −
(s− 1)

2

n∑
i=1

(
x2
2i − x2

2i−1

)
(27)

Therefore the MFPT of the particle to reach x = L starting from x = 0 in presence of n barriers of width a is given
by,

τ = ⟨T1⟩x=0 = −B1

D1

=
1

D1

[
L2

2
+

(s− 1)

2

n∑
i=1

(
x2
2i − x2

2i−1

)]
(28)
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The summation in the above equation can be computed very easily.

n∑
i=1

(
x2
2i − x2

2i−1

)
=

n∑
i=1

[
i2(a+ b)2 − {b+ (i− 1)(a+ b)}2

]
=

n∑
i=1

[
i2(a+ b)2 − {i(a+ b)− a}2

]
=

n∑
i=1

[
2ia(a+ b)− a2

]
= n(n+ 1)a(a+ b)− na2 = naL (29)

If τ0 denotes the MFPT of the particle in absence of barriers then we have

τ0 =
L2

2D1
(30)

Therefore the scaled MFPT in presence of barriers is given by,

τ

τ0
=

2

L2

[
L2

2
+

(s− 1)

2

n∑
i=1

(
x2
2i − x2

2i−1

)]

= 1 +
(s− 1)

L2
· naL

= 1 + (s− 1) · na
L

= 1 + (s− 1)

(
L− b

a+ b

)
a

L

= 1 + (s− 1)
L
(
1− b

L

)
b
(
1 + a

b

) · a
L

= 1 +
(s− 1)

(
a
b − a

L

)
1 + a

b

(31)

2.2.2 ENERGETIC BARRIERS

In the same spirit we shall now solve first passage time in case of energetic barriers. The hopping dynamics that
determines the motion can be written as,

⟨T2i−1⟩x2i−1
=

1

p+ q
+

p

p+ q
⟨T2i−1⟩−δ+x2i−1

+
q

p+ q
⟨T2i+1⟩x2i

∴ p
(
⟨T2i−1⟩x2i−1 − ⟨T2i−1⟩−δ+x2i−1

)
= 1 + q⟨T2i+1⟩x2i − q⟨T2i−1⟩x2i−1

⟨T2i−1⟩x2i−1
=

1

q
+ ⟨T2i+1⟩x2i

− pδ

q
∂x⟨T2i−1⟩x2i−1

(32)

Now we define D1 = pδ2 and vq = qδ such that both D1 and vq are finite at δ → 0. Therefore we must have p, q → ∞
and thus Eq.32 can be written as,

⟨T2i−1⟩x2i−1
= ⟨T2i+1⟩x2i

− D1

vq
∂x⟨T2i−1⟩x2i−1

(33)

Similarly it is easy to show that

⟨T2i−1⟩x2i−1
= ⟨T2i+1⟩x2i

− D1

vq
∂x⟨T2i+1⟩x2i

(34)

Hence from Eq.33 and Eq.34 we get,

∂x⟨T2i−1⟩x2i−1
= ∂x⟨T2i+1⟩x2i

(35)
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For n energetic barriers, there will be n+1 fast regions where the particle diffuses. Therefore,

⟨T2i−1⟩ = − 1

D1

[
x2

2
+Aix+Bi

]
(36)

where i ∈ {1, n+ 1} denotes the region with boundaries x2i−2 and x2i−1 where the particle is in.
Now the lattice boundary conditions are same as Eq.11 and Eq.12,

∂x⟨T1⟩x=0 = 0 (37)

⟨T2n+1⟩x=L = 0 (38)

Now Eq.37 gives

A1 = 0

From Eq.35 we get,

Ai+1 = Ai − a = A1 − ia = −ia (39)

Using Eq.38 we find Bn+1 as,

Bn+1 = −
x2
2n+1

2
+ nax2n+1 (40)

where x2n+1 = L = (n+ 1)(a+ b)− a.
Now from Eq.33 we can write,

Bi = Bi+1 +
1

2

(
x2
2i − x2

2i−1

)
+ (Ai+1x2i −Aix2i−1)−

D1

vq
[x2i +Ai+1] (41)

Therefore

B1 = Bn+1 +

n∑
i=1

1

2

(
x2
2i − x2

2i−1

)
+ (Ai+1x2i −Aix2i−1)−

D1

vq
(x2i +Ai+1)

⇒ B1 = Bn+1 −
n(n− 1)

2
a2 +

n(n+ 1)D1a

2vq
− n(n+ 1)

2

(
D1

vq
+ a

)
(a+ b) +

1

2

n∑
i=1

(
x2
2i − x2

2i−1

)
(42)

Using Eq.6, Eq.29 and Eq.40, we can easily show from Eq.42 that

B1 = −
(n+ 1)2b2 + n(n+ 1)D1b

vq

2
(43)

The scaled first passage passage time then can be written as,

τ

τ0
= −2B1

L2
=

(n+ 1)2b2 + n(n+ 1)D1b
vq

L2

Fig. S5. Schematic of the system with n energetic barriers. The free regions are denoted by blue and barriers are denoted by
red. The boundary points of the ith barrier are denoted by x2i−1 and x2i. ⟨T2i−1⟩ denotes the mean time for the particle to
reach x = L starting from the ith free region. Note that in this case ⟨T2i⟩’s do not exist for all values of i.
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Now using the relation L = (n+ 1)(a+ b)− a = n(a+ b) + b one can write,

τ

τ0
=

(L+a)2

(a+b)2 b
2 +

(
L−b
a+b

)(
L+a
a+b

)
D1b
vq

L2

=

b2(L+a)2

(a+b)2 + (L2+aL−bL−ab)
(a+b)2

D1b
vq

L2

=

b2(L+a)2

L2 + (L2+aL−bL−ab)
L2

D1b
vq

(a+ b)2

=
b2
(
1 + a

L

)2
+
(
1 + a

L − b
L − ab

L2

)
D1b
vq

(a+ b)2

=
b2
(
1 + a

L

)2
+
(
L
b + a

b − 1− a
L

)
D1b

2

Lvq

(a+ b)2

=
b2
(
1 + a

L

)2
+
[
a
b

(
L
a + 1

)
− a

L

(
L
a + 1

)]
D1b

2

Lvq

b2
(
1 + a

b

)2
=

(
1 + a

L

)2
+
(
a
b − a

L

) (
1 + L

a

)
D
Lvq(

1 + a
b

)2 (44)

3. EFFECTIVE DIFFUSIVITY

In this section, we investigate the long time diffusivity in the presence of barriers. Using kinetic simulations, we
characterize the Mean Square Displacement (MSD) of the random walker as a function of elapsed time in an infinite
lattice in the presence of barriers. Note that, while the first passage property is history-dependent, the MSD is not.

For entropic barriers, the MSD is shown for three different a/b ratios in Fig. ??a. The RW initially explores the
empty region in which it starts before it encounters the first barrier. This excursion is purely diffusive, with the
bulk diffusion coefficient D1, as is expected. At the timescale when it first encounters a barrier, the motion becomes
subdiffusive as the barrier hinders the bulk diffusive behavior. Over long timescales (t > 105), the motion becomes
diffusive again, however with an effective diffusion coefficient Deff i.e. ⟨x2(t)⟩ = 2Defft. The value of Deff is lower
than the bulk value D1.

As a/b increases, and b decreases, with increasing n, the transition from early diffusive to a subdiffusive regime
happens faster – for a/b = 0.35, 1, 4, the crossover times are t ∼ 103, 102, 5 respectively. Moreover, with increasing a/b
ratio the curves in Fig. ??a at long times monotonically shift downwards. This in turn implies a monotonic decrease
of Deff as shown in Fig. ??c. In 1D, the MFPT of a free region (in absence of barriers) is given by τ0 = L2/2D1.
Analogously writing the MFPT of the heterogeneous medium as τ = L2/2Deff , it is easy to obtain the expression Deff

for the case L → ∞. The Eq. 16 in the main text reads,

τ

τ0
= 1 +

(s− 1)(ab − a
L )

1 + a
b

⇒ L2/2Deff

L2/2D1
= 1 +

(s− 1)ab
1 + a

b

[ a/L → 0 as L → ∞ ]

⇒ Deff = D1

(
a+ b

as+ b

)
(45)

The comparison of the simulation results with the effective diffusivity obtained from the theory is shown in Fig. ??c.
This monotonic behavior is consistent with the monotonic increase on the MFPT for entropic barriers in a finite
domain.

Next we turn to a similar characterization for the energetic barriers. The MSD of the RW on an infinite lattice, as
above, is again shown for three different a/b ratios in Fig. ??b. Again, for all these case, there is an initial diffusive
regime with a diffusivity D1 of the empty regions. That crosses over to a subdiffusive regime when the RW starts to
feel the effect of the barriers. As expected, this transition happens earlier for the highest number of barriers (a/b = 4),
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and later with decreasing a/b ratios. In the long time limit, for all three a/b ratios shown, the motions are again
diffusive, with ⟨x2⟩ = 2Defft. However, quite strikingly in Fig. ??d, the MSD of the intermediate barrier number
(with a/b = 1) lies below both the cases with lower and higher barrier numbers. As a result, as shown in Fig. ??d,
Deff shows a non-monotonic behavior with increasing barrier number (or increasing a/b). Again, following the same
method as before, one can obtain Deff from Eq. 23 of main text,

τ

τ0
=

(
1 + a

L

)2
+
(
a
b − a

L

) (
1
L + 1

a

)
D1

vq

(1 + a
b )

2

⇒ L2/2D1

L2/2Deff
=

1 + D1

bvq(
1 + a

b

)2 [ 1/L → 0 as L → ∞ ]

⇒ Deff = D1

((
1 + a

b

)2
1 + D1

bvq

)
(46)

The comparison between the analytical expression with the simulation results is shown in Fig. ??d. Thus the signature
of the non-monotonic dependence of the MFPT has its counterpart in the transport properties as well.

4. SUPERDIFFUSIVE MOTION

To generate a driven motion of the particle we follow the Elephant-like memory diffusion algorithm introduced by
Schütz and Trimper in 2004 [1]. In this process the particle has complete memory of its previous steps. If at any time
t the particle is at xt then the evolution equation can be written as

xt+1 = xt + σt+1

where σt+1 is statistically chosen by the following method:

1. First a previous timestep t′ ∈ {1, 2, ..., t} is chosen randomly.

2. Then, σt+1 = σt′ with probability w and σt+1 = −σt′ with probability 1− w.

The particle starts at x = 0 at t = 0, and the first step of the particle is always towards positive direction in our
simulation, i.e, σ1 = +1.

The MSD in this type of non-Markovian process follows [1]:

⟨x2
t ⟩ ∼ t for w < 0.75

∼ t lnt for w = 0.75

∼ t4w−2 for w > 0.75

For our simulations, we chose two values of w = (0.875, 0.95) in the regime w > 0.75 to recover superdiffusive
transport, as mentioned in the text.
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[1] Gunter M Schütz and Steffen Trimper. Elephants can always remember: Exact long-range memory effects in a non-markovian
random walk. Physical Review E, 70(4):045101, 2004.


