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I. SIMULATION MOVIES

We include the following simulation videos to show the dynamics in different regimes:

1. Movie1.mp4: Velocity fields in the Mesoscopic Range Order (MRO) regime, for Ω = 10−3, Dr = 10−2.

2. Movie2.mp4: Velocity fields in the Chiral Mesoscopic Range Order (CMRO) regime, for Ω = 10−2, Dr = 10−3.

3. Movie3.mp4: Velocity fields in the Dynamic Disorder (DD) regime, for Ω = 10−2, Dr = 5.

4. Movie4.mp4: Velocity fields in the Chiral Disorder (CD) regime, for Ω = 5, Dr = 10−2.

5. Movie5.mp4: Velocity fields on the critical line (Dr = Ω), for high values of Ω = Dr = 10, exhibiting hammering
state; non-monotonic behavior of the magnitudes (i.e., of the size of the velocity vectors; shown in Fig. S.1(b)).

6. Movie6.mp4: Velocity fields for high activity v0 = 0.1, in the CMRO regime (Dr = 10−2, Ω = 0.1).

7. Movie7.mp4: Velocity fields for high activity v0 = 0.12, in CMRO regime (Dr = 10−2, Ω = 0.1).

8. Movie8.mp4: Velocity fields in the Chiral Mesoscopic Range Order (CMRO) regime, for equal packing fractions
of CW and CCW chiral active Brownian particles (Ω = ±0.1, Dr = 10−2).

9. Movie9.mp4: Velocity fields of binary mixtures of particles with different chirality levels, with equal packing
fractions of species A and B, for ΩA = 0.1, ΩB = 0.2, and Dr = 10−2.
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FIG. S.1. Visualization of the velocity fields for high chirality Ω and high rotational diffusion Dr values. Panel (a) show
snapshots of the velocity angles ϕv = tan−1(vy/vx) while panel (b) shows snapshots of the velocity amplitudes |v|/v0 =√

v2x + v2y/v0, both in the Ω−Dr parameter space.

The active speed is set to v0 = 0.01 unless stated otherwise. Other parameters include the elastic repulsion strength
k = 1, mobility µ = 1, packing fraction ϕ = 1, and (square) system size L = 100, with periodic boundary conditions.

II. NORMAL MODE FORMULATION

In the absence of self-propulsion speed i.e., v0 = 0, the disks have an equilibrium position r0i , corresponding to a
local minimum of the elastic energy. Defining small displacement around the equilibrium positions as δri = ri − r0i ,
the dynamics is described by [S1]

δṙi = v0n̂i −
∑
j

Kij · δrj , (S.1)

where the Kij ’s are 2× 2 blocks of the 2N × 2N dynamical matrix.
We expand δri over the normal modes, i.e., the eigenvectors of the dynamical matrix. Each normal mode is a

2N -dimensional vector that can be written as a list of N two-dimensional vectors (ξν1 , ..., ξ
ν
N ), where ν = 1, ..., 2N

labels each mode and the associated eigenvalue is denoted by λν . Now, writing δri in the decomposed normal mode

form δri =
∑2N

ν=1 aνξ
ν
i , we can project Eq. (S.1) on the normal modes, obtaining

2N∑
ν=1

ȧνξ
ν
i = −

2N∑
ν=1

λνaνξ
ν
i + v0n̂i . (S.2)

Taking the dot product with eigenvetors
∑2N

ν=1 ξ
ν
i , we find

2N∑
ν=1

ȧνξ
ν
i ·

2N∑
ν=1

ξνi = −
2N∑
ν=1

λνaνξ
ν
i ·

2N∑
ν=1

ξνi + v0n̂i ·
2N∑
ν=1

ξνi ,

which simplifies to

2N∑
ν=1

ȧνξ
ν
i · ξνi = −

2N∑
ν=1

λνaνξ
ν
i · ξνi + v0n̂i ·

2N∑
ν=1

ξνi ,

Taking sum over all the particles i = 1 to N

2N∑
ν=1

ȧν

N∑
i=1

ξνi · ξνi = −
2N∑
ν=1

λνaν

N∑
i=1

ξνi · ξνi + v0

N∑
i=1

n̂i ·
2N∑
ν=1

ξνi ,
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and considering orthonormal eigenvectors basis conditions
∑N

i=1 ξ
ν
i · ξνi = 1, we get

2N∑
ν=1

ȧν = −
2N∑
ν=1

λνaν +

2N∑
ν=1

v0

N∑
i=1

n̂i · ξνi ,

leads to the uncoupled set of equations

ȧν = −λνaν + ην , (S.3)

corresponding to the projection of the position dynamics onto the normal modes ν. The projection of the self-
propulsion force onto the normal modes ν can be written from Eq. (S.3),

ην = v0

N∑
i=1

n̂i · ξνi . (S.4)

Now, we proceed to calculate the properties of ην(t). First, we compute the average of ην(t)

⟨ην(t)⟩ = v0

N∑
i=1

⟨n̂i(t)⟩ · ξνi ,

which leads to ⟨ην(t)⟩ = 0. Next, we calculate the two-time correlation

⟨ην(t)ην′(t′)⟩ = v20⟨
N∑
i=1

n̂i(t) · ξνi
N∑
i=1

n̂i(t
′) · ξν′

i ⟩ ,

where n̂i evolves independently, which leads to

⟨ην(t)ην′(t′)⟩ = v20⟨n̂(t) ·
N∑
i=1

ξνi n̂(t
′) ·

N∑
i=1

ξν
′

i ⟩ .

Rearranging with n̂(t) · ∑N
i=1 ξ

ν
i =

∑N
i=1 ξ

ν
i · n̂(t) and taking the time average of the only time dependent variable

n̂(t), we get

⟨ην(t)ην′(t′)⟩ = v20

N∑
i=1

ξνi · ⟨n̂(t)n̂(t′)⟩ ·
N∑
i=1

ξν
′

i .

Expanding with ξνi = x̂ξνi (x) + ŷξνi (y) and n̂ = x̂nx + ŷny and setting cross terms to zero ⟨nxny⟩ = ⟨nx⟩⟨ny⟩ = 0,
leads to

⟨ην(t)ην′(t′)⟩ = v20

N∑
i=1

⟨[ξνi (x)ξν
′

i (x)nx(t)nx(t
′) + ξνi (y)ξ

ν′

i (y)ny(t)ny(t
′)]⟩ ,

Considering the symmetry, we get

⟨ην(t)ην′(t′)⟩ =
v20
2

N∑
i=1

⟨[ξνi (x)ξν
′

i (x)nx(t)nx(t
′) + ξνi (x)ξ

ν′

i (x)ny(t)ny(t
′) + ξνi (y)ξ

ν′

i (y)ny(t)ny(t
′) + ξνi (y)ξ

ν′

i (y)nx(t)nx(t
′)]⟩ ,

⟨ην(t)ην′(t′)⟩ =
v20
2

N∑
i=1

⟨[ξνi (x)ξν
′

i (x)n(t) · n(t′) + ξνi (y)ξ
ν′

i (y)n(t) · n(t′)]⟩ ,

Rearranging again, we obtain

⟨ην(t)ην′(t′)⟩ =
v20
2
⟨n̂(t) · n̂(t′)⟩

N∑
i=1

ξνi · ξν′

i ,
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Finally, using the orthonormal eigenvectors basis condition,
∑N

i=1 ξ
ν
i · ξν′

i = δν,ν′ , we get

⟨ην(t)ην′(t′)⟩ = v20
2
⟨n̂(t) · n̂(t′)⟩δν,ν′ . (S.5)

In the absence of self-alignment, the θ(t) obey chiral-diffusive dynamics. Using the orientation autocorrelation, the
final result thus becomes ⟨ην(t)ην(0)⟩ = (v20/2)e

−Drt cosΩt.
From Eq. (S.3), we get

aν(t) = aν(0)e
−λνt +

∫ t

0

dt′ην(t
′)e−λν(t−t′) . (S.6)

The mean of aν(t) is ⟨aν(t)⟩ = aν(0)e
−λνt, in the steady-state ⟨aν(t)⟩|t→∞ = 0. Now, we proceed to calculate ⟨a2ν(t)⟩,

⟨a2ν(t)⟩ = ⟨a2ν(0)⟩e−2λνt + e−2λνt

∫ t

0

dt′
∫ t

0

dt′′⟨ην(t′)ην(t′′)⟩eλν(t
′+t′′) . (S.7)

Substituting the autocorrelation of ην(t) gives

⟨a2ν(t)⟩ = ⟨a2ν(0)⟩e−2λνt +
v20
2
e−2λνt

∫ t

0

dt′
∫ t

0

dt′′eλν(t
′+t′′)e−Dr|t′−t′′| cos (Ω|t′ − t′′|) . (S.8)

Rewriting,

⟨a2ν(t)⟩ = ⟨a2ν(0)⟩e−2λνt +
v20
2
e−2λνtI(t) . (S.9)

We now proceed to calculate the integration I(t), given by

I(t) =

∫ t

0

dt′
∫ t

0

dt′′eλν(t
′+t′′)e−Dr|t′−t′′| cos (Ω|t′ − t′′|) . (S.10)

We can split the above integration in two parts I = I1 + I2 based on the conditions I1(t) for t′ > t′′ and I2(t) for
t′′ > t′. Let’s consider the first case t′ > t′′:

I1(t) =

∫ t

0

dt′
∫ t′

0

dt′′eλν(t
′+t′′)e−Dr(t

′−t′′) cos [Ω(t′ − t′′)] . (S.11)

Similarly for t′′ > t′:

I2(t) =

∫ t

0

dt′′
∫ t′′

0

dt′eλν(t
′+t′′)e−Dr(t

′′−t′) cos [Ω(t′′ − t′)] . (S.12)

Solving these integrals analytically can be quite challenging due to the exponential and cosine terms. However, we
can always expand the cosine term using Euler’s formula and applying to the I1(t) gives

I1(t) =
1

2

∫ t

0

dt′
∫ t′

0

dt′′eλν(t
′+t′′)e−Dr(t

′−t′′)
(
e[iΩ(t′−t′′)] + e[−iΩ(t′−t′′)]

)
. (S.13)

Now, considering the symmetry of the problem, I1 = I2, and we get I = 2I1

I(t) =
(Dr + λν)

(
e2λνt − 1

)
λν [(Dr + λν)2 +Ω2]

−
(
e(λν−Dr+iΩ)t − 1

)
(λν +Dr − iΩ)(λν −Dr + iΩ)

−
(
e(λν−Dr−iΩ)t − 1

)
(λν +Dr + iΩ)(λν −Dr − iΩ)

. (S.14)

In the limit of t → ∞, we calculate ⟨a2ν⟩ = lim
t→∞

⟨a2ν⟩(t) in the steady-state

⟨a2ν⟩ =
v20(Dr + λν)

2λν [(Dr + λν)2 +Ω2]
. (S.15)

The average energy per mode Eν = λν⟨a2ν⟩/2 in the steady-state then reads

Eν =
v20(Dr + λν)

4 [(Dr + λν)2 +Ω2]
. (S.16)
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FIG. S.2. Visualization of the mean energy resulting for high chirality levels. The panels present colorplots of Eν/v
2
0 , given by

Eq. (S.16), as a function of the λν eigenvalues and of the rotational diffusion coefficient Dr, for fixed chirality (a) Ω = 0.1, (b)
Ω = 1, and (c) Ω = 10.

A. Spatial velocity correlations in Fourier space

We consider the velocity-velocity correlation function in Fourier space, where one can express the (discrete) Fourier
transform v(q) as a function of the particles reference positions r0i : ⟨|v(q)2|⟩ = ⟨v(q) · v∗(q)⟩, with v(q) =∑N

j=1 e
iq·r0j δṙj/N . Expanding over the normal modes, one finds ⟨|v(q)2|⟩ = ∑

ν,ν′⟨ȧν ȧν′⟩ξν(q) · ξ∗ν′(q) with ξν(q) =∑N
j=1 e

iq·r0jξνj /N , where ξν(q) is the Fourier transform of the vectors ξν . As, the modes are uncorrelated, we rewrite

⟨|v(q)2|⟩ = ∑
ν,ν′⟨ȧ2ν⟩|ξν(q)|2δνν′ . Now we proceed to calculate ⟨ȧ2ν⟩

⟨ȧ2ν⟩ = λ2
ν⟨a2ν⟩ − 2λν⟨aνην⟩+ ⟨η2ν⟩ . (S.17)

The first term ⟨a2ν⟩ was already calculated in Eq. (S.15). We now calculate ⟨aνην⟩. Multiplying ην(t) to the Eq. (S.6)
leads to

⟨aνην⟩ = aν(0)e
−λνt⟨ην(t)⟩+

∫ t

0

dt′⟨ην(t)ην(t′)⟩e−λν(t−t′) . (S.18)

The first term ⟨ην(t)⟩ = 0, gives

⟨aνην⟩ =

∫ t

0

dt′⟨ην(t)ην(t′)⟩e−λν(t−t′) , (S.19)

substituting ⟨ην(t)ην(t′)⟩ produces

⟨aνην⟩ =
v20
2

∫ t

0

dt′e−Dr|t−t′| cos (Ω|t− t′|)e−λν(t−t′) , (S.20)

with t > t′. Then

⟨aνην⟩ =
v20
2

∫ t

0

dt′e−(Dr+λν)(t−t′) cos (Ω(t− t′)) , (S.21)

⟨aνην⟩ =
v20
4

∫ t

0

dt′e−(Dr+λν)(t−t′)
(
e[iΩ(t−t′)] + e[−iΩ(t−t′)]

)
. (S.22)

After performing a very simple integration of above equation, setting the steady-state limit t → ∞ gives,

⟨aνην⟩ =
v20(Dr + λν)

2[(Dr + λν)2 +Ω2]
. (S.23)

Now, the third term of Eq. (S.17) gives ⟨η2ν⟩ = v20/2. Finally, we get the velocity correlation function ⟨|v(q)2|⟩ =∑
ν⟨ȧ2ν⟩|ξν(q)|2 using Eq. (S.17), Eq. (S.15), and Eq. (S.23). This leads to

⟨|v(q)2|⟩ =
v20
2

∑
ν

[
1− λν(Dr + λν)

(Dr + λν)2 +Ω2

]
|ξν(q)|2 , (S.24)
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where ξν(q) is the Fourier transform of the vector ξνi . For Ω = 0, Eq. (S.24) simplifies to the velocity correlation
function for active Brownian disks studied by Henkes et al. in [S1]:

⟨|v(q)2|⟩ =
v20
2

∑
ν

Dr

Dr + λν
|ξν(q)|2 . (S.25)

In the other limit, with Dr = 0, the deterministic chiral active motion gives

⟨|v(q)2|⟩ =
v20
2

∑
ν

Ω2

Ω2 + λ2
ν

|ξν(q)|2 . (S.26)

III. CONTINUUM ELASTIC FORMULATION

We describe here a mathematical framework of the continuum elasticity formulation for chiral active solids, in terms
of their deformation and stress distribution, in presence of active forces and constant torque.

Isotropic elastic solid: In two dimensions, the elastic energy of an isotropic elastic solid with bulk modulus B
and shear modulus G can be written as [S2]

Fel =
1

2

∫
d2r

[
B Tr(û(r))2 + 2G

(
2uαβ(r)−

1

2
Tr(û(r))δαβ

)2
]

, (S.27)

where û is the strain tensor with components uαβ = 1
2 [∂αuβ + ∂βuα] written as spatial derivatives of the components

α, β ∈ {x, y} of the displacement vectors u(r) = r′(r) − r from a reference state r to the deformed state r′(r). The

stress tensor σαβ = δFel

δuαβ
can then be written as σαβ = Bδαβuγγ + 2G(uαβ − 1

2δαβuγγ), where the summation over

pairs of repeated indices is assumed. We can then write the overdamped equations of motion for the displacement
field as u̇α = ∂βσαβ , in vectorial form as

u̇ = B∇ (∇ · u) +G∆u . (S.28)

In Fourier space ũ(q, t) =
∫
d2r u(r, t)eiq·r with q = (qx, qy), we can write this relation as

˙̃u = −D(q)ũ , (S.29)

where the 2× 2 dynamic matrix in Fourier space written as

D(q) =

[
Bq2x +Gq2 Bqxqy

Bqxqy Bq2y +Gq2

]
, (S.30)

where q2 = q2x + q2y.
Isotropic active elastic solid: In the presence of self-propulsion force, the continuum equation of motion is given

by [S1]

u̇ = ∇ · σ + fact . (S.31)

In our model, the active force is fact(r, t) = v0n̂(r, t). In order to compare our simulation results and continuum
theory, the numerical computations are done for relatively large system size but finite size of L, with a minimum
length scale given by the particle size a = 2r0, where r0 is the radius of the particle. This guides us to perform
discrete space Fourier transformation in numerical analysis. On the other hand, by setting L → ∞ and a → 0 in
the analytic calculation give the results in hydrodynamic limit. For consistency between two approaches, we use the
following space continuous Fourier transform u(r, t) = 1

(2π)2

∫
d2q ũ(q, t)e−iq·r. By considering the finite system and

particle sizes, we discretize the integral into 1
(2π)2

∫
d2q → 1

Na2

∑
q and

∫
d2r → a2

∑
r, where N = 4ϕL2/πa2, ϕ is

the packing fraction of the system close to 1 for dense systems. In the sum q takes discrete values defined by the
geometry of the problem. For instance a square lattice of linear size L, q ≡ (qx, qy) = 2π/L(m,n) where integers m,n
satisfying 0 ≤ m,n ≤ L/a− 1. Thus, the discrete space Fourier transform u(q, t) is related to the continuous Fourier
transform ũ(q, t) through ũ(q, t) = a2u(q, t).
To proceed with the computations in the framework of continuum theory, we now introduce space and time Fourier

transform: u(r, t) = 1
(2π)3

∫
d2q

∫
dω ũ(q, ω)e−i(q·r+ωt) and ũ(q, ω) =

∫
d2r

∫
dt u(r, t)ei(q·r+ωt), with these defini-

tions, the equation of motion (S.31) can be rewritten in Fourier space as

−iωũ(q, ω) = f̃act(q, ω)− D(q)ũ(q, ω) , (S.32)
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where we have defined the continuous Fourier transform f̃act(q, ω) of the active force fact(r, t) in Fourier space as

f̃act(q, ω) = v0

∫
d2r

∫ ∞

−∞
dt n̂(r, t) ei(q·r+ωt) . (S.33)

Active noise correlations: To determine the correlation of active orientation, we need to start from a spatially
discretized version of the model. For definiteness, we assume a square grid with lattice spacing a. Then for each grid
node i we have n̂i = (cos(θi), sin(θi)) with dynamics presented in equation of motion Eq. (2) of the main text, which
is spatially uncorrelated and we thus have ⟨n̂i(t) · n̂j(t

′)⟩ = δi,j⟨n̂(t) · n̂(t′)⟩. In order to take a continuum limit, we
replace n̂i by a continuous field, and we substitute δi,j by its Dirac counterpart, δi,j → a2δ(r− r′). We then have that

in continuum limit ⟨n̂(r, t) · n̂(r′, t′)⟩ = a2δ(r− r′)⟨n̂(t) · n̂(t′)⟩. In view of Eq. (S.33), it is clear that ⟨f̃act(q, ω)⟩ = 0

and second order correlations CF̃ = ⟨f̃act(q, ω) · f̃act(q′, ω′)⟩ are simply

CF̃ =
2(2π)3a2v20Dr

(ω − Ω)2 +D2
r

δ(q+ q′)δ(ω + ω′) . (S.34)

For finite system size L, we replace the Dirac delta by the Kronecker delta, δ(q+q′) → 1
(∆q)2 δq′,−q, with ∆q ≡ 2π/L.

We are thus led to define the space-discrete Fourier transform fact(q, ω) = f̃act(q, ω)/a
2 for discrete wave vectors q with

continuous variable ω. The correlation of the discrete Fourier transform fact(q, ω) reads CF = ⟨fact(q, ω) · fact(q′, ω′)⟩

CF =
Nπ2v20Dr

ϕ [(ω − Ω)2 +D2
r ]
δ(ω + ω′) . (S.35)

A. Spatial velocity correlation

We decompose equation (S.33) into longitudinal and transverse mode: ũ = ũL(q, ω)q̂ + ũ(q, ω)q̂⊥ along and
perpendicular to the eigenvectors of the dynamical matrix in equation (S.29). We obtain two equations,

−iωũL(q, ω) = f̃act(q, ω) · q̂− (B +G)q2ũL(q, ω) , (S.36)

−iωũT(q, ω) = f̃act(q, ω) · q̂⊥ −Gq2ũT(q, ω) , (S.37)

with solution

ũL(q, ω) =
f̃Lact(q, ω)

−iω + (B +G)q2
, (S.38)

ũT(q, ω) =
f̃Tact(q, ω)

−iω +Gq2
, (S.39)

where f̃Lact(q, ω) = f̃act(q, ω) · q̂ and f̃Tact(q, ω) = f̃act(q, ω) · q̂⊥.
We can use these expressions to obtain velocity correlation functions that can be directly measured in simulations.

As ṽ(q, ω) = −iωũ(q, ω), we can simply write

⟨ṽ(q, ω) · ṽ(q′, ω′)⟩ = ⟨ṽL(q, ω)ṽL(q′, ω′)⟩+ ⟨ṽT(q, ω)ṽT(q′, ω′)⟩
= −ωω′ [⟨ũL(q, ω)ũL(q

′, ω′)⟩+ ⟨ũT(q, ω)ũT(q
′, ω′)⟩] . (S.40)

In the case of isotropic active force, it is easy to show that the longitudinal and transverse components of the active
force contribute equally to the correlation,

⟨f̃Lact(q, ω)f̃Lact(q′, ω′)⟩ = ⟨f̃Tact(q, ω)f̃Tact(q′, ω′)⟩

=
1

2
⟨f̃act(q, ω)f̃act(q′, ω′)⟩

=
CF̃

2
. (S.41)

The correlation functions of longitudinal and transverse components of the Fourier velocity field are therefore

⟨ṽL(q, ω)ṽL(q′, ω′)⟩ = −ωω′⟨ũL(q, ω)ũL(q
′, ω′)⟩ , (S.42)

⟨ṽT(q, ω)ṽT(q′, ω′)⟩ = −ωω′⟨ũT(q, ω)ũT(q
′, ω′)⟩ . (S.43)
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Utilizing Eq. (S.38) and Eq. (S.39) and substituting Eq. (S.41), we find

⟨ṽL(q, ω)ṽL(q′, ω′)⟩ =
ω2CF̃

2 [(B +G)2q4 + ω2]
, (S.44)

⟨ṽT(q, ω)ṽT(q′, ω′)⟩ =
ω2CF̃

2 [G2q4 + ω2]
. (S.45)

To calculate the equal-time Fourier transform of the velocity, we need to integrate over frequency, i.e., for spatial
longitudinal velocity correlation, we obtain

⟨ṽL(q, t)ṽL(q′, t)⟩ =
1

(2π)2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ω+ω′)t⟨ṽL(q, ω)ṽL(q′ω′)⟩ . (S.46)

A straightforward integration leads to

⟨ṽL(q, t)ṽL(q′, t)⟩ = 2π2a2v20
Dr((B +G)q2 +Dr) + Ω2

((B +G)q2 +Dr)
2
+Ω2

δ(q+ q′) . (S.47)

Similarly, for the spatial transverse velocity correlation we find

⟨ṽT(q, t)ṽT(q′, t)⟩ = 2π2a2v20
Dr(Gq2 +Dr) + Ω2

(Gq2 +Dr)
2
+Ω2

δ(q+ q′) . (S.48)

Finally, the equal-time continuous Fourier velocity correlation components can be expressed as

⟨ṽL(q, t)ṽL(q′, t)⟩ = 2π2a2v20
1 + χ(ξLq)

2

1 + 2χ(ξLq)2 + (ξLq)4
δ(q+ q′) , (S.49)

⟨ṽT(q, t)ṽT(q′, t)⟩ = 2π2a2v20
1 + χ(ξTq)

2

1 + 2χ(ξTq)2 + (ξTq)4
δ(q+ q′) , (S.50)

where the longitudinal and transverse characteristic length scales are respectively

ξL =

√
B +G√
D2

r +Ω2
, ξT =

√
G√

D2
r +Ω2

, (S.51)

and the control parameter is χ = Dr/
√
D2

r +Ω2.
The final equal-time continuous Fourier velocity correlation expression if therefore

⟨ṽ(q, t) · ṽ(q′, t)⟩ = 2π2a2v20

[
1 + χ(ξLq)

2

1 + 2χ(ξLq)2 + (ξLq)4
+

1 + χ(ξTq)
2

1 + 2χ(ξTq)2 + (ξTq)4

]
δ(q+ q′) . (S.52)

It is important to emphasize that Eq. (S.52) was obtained in the continuum formulation, where δ(q+q′) is a Dirac
delta distribution. Hence, ⟨ṽ(q, t) · ṽ(q′, t)⟩ is infinite if one sets q′ = −q. To compare with numerical results, one has
to come back to the discrete formulation, corresponding to a finite system size L. The Dirac delta is then replaced
by Kronecker delta, according to the substitution rule. One also needs to replace the continuum Fourier transform
ṽ(q, t) with the discrete one, v(q, t), according to ṽ(q, t) = a2v(q, t), then using N = L2/a2 we thus end up with

⟨v(q, t) · v(−q, t)⟩ = Nv20
2

[
1 + χ(ξLq)

2

1 + 2χ(ξLq)2 + (ξLq)4
+

1 + χ(ξTq)
2

1 + 2χ(ξTq)2 + (ξTq)4

]
. (S.53)

1. Active Brownian Particles(ABPs): In the absence of chirality (Ω = 0), the longitudinal and transverse

characteristic length scales become ξL =
√
(B +G)/Dr , ξT =

√
G/Dr. Thus, the equal-time continuous velocity

correlations simplify to the active Brownian disks solution [S1]

⟨v(q, t) · v(−q, t)⟩ = Nv20
2

[
1

1 + (ξLq)2
+

1

1 + (ξTq)2

]
. (S.54)

2. Chiral Active Particles(CAPs): In the absence of rotational noise (Dr = 0), the longitudinal and transverse

characteristic length scale becomes ξL =
√

(B +G)/Ω , ξT =
√
G/Ω. The equal-time continuous velocity correlation

thus simplified to

⟨v(q, t) · v(−q, t)⟩ = Nv20
2

[
1

1 + (ξLq)4
+

1

1 + (ξTq)4

]
. (S.55)
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FIG. S.3. Visualization of the normalized velocity autocorrelation function ⟨v(t) · v(0)⟩/⟨v(0)2⟩, given by Eq. (S.63), as a
function of time t and of the rotational diffusion Dr or the chirality Ω. Panels (a) and (b) show the limiting cases: (a) active
Brownian disks (Ω = 0) and (b) noiseless chiral active disks (Dr = 0). Figures (c) and (d) show intermediate cases with (c)
different Dr for constant Ω = 0.1 and (d) different Ω for constant Dr = 0.01.

B. Mean-squared velocity

We calculate here the real-space mean-squared velocity ⟨|v(r, t)|2⟩. First, we have

⟨v(r, t) · v(r, t)⟩ =
1

(2π)4

∫
d2q

∫
d2q′ ⟨ṽ(q, t) · ṽ(q′, t)⟩ e−i(q+q′)·r . (S.56)

Using equation (S.53), we obtain

⟨v(r, t) · v(r, t)⟩ =
a2v20
8π2

∫
d2q

[
1 + χ(ξLq)

2

1 + 2χ(ξLq)2 + (ξLq)4
+

1 + χ(ξTq)
2

1 + 2χ(ξTq)2 + (ξTq)4

]
. (S.57)

The physical upper limit of this integral is set by the inverse particle size, i.e., by qm = 2π/a. Therefore, using∫
d2q = 2π

∫
qdq = π

∫
d(q2), we can compute

⟨|v|2⟩ =
a2v20
4π

∫
dq q

[
1 + χ(ξLq)

2

1 + 2χ(ξLq)2 + (ξLq)4
+

1 + χ(ξTq)
2

1 + 2χ(ξTq)2 + (ξTq)4

]
. (S.58)

We can solve the integration numerically to obtain the mean-squared velocity. We can also get the closed-form analytic
solution in limiting cases. For Ω = 0, the closed-form mean-squared velocity solution of ABPs will be [S1]

⟨|v|2⟩ =
v20
8π

[
a2

ξ2L
log(1 + ξ2Lq

2
m) +

a2

ξ2T
log(1 + ξ2Tq

2
m)

]
. (S.59)

In the absence of rotational noise (Dr = 0), we instead get the mean-squared velocity for CAPs, given by

⟨|v|2⟩ =
v20
8π

[
a2

ξ2L
tan−1(ξ2Lq

2
m) +

a2

ξ2T
tan−1(ξ2Tq

2
m)

]
. (S.60)

C. Velocity autocorrelation function

We compute the velocity autocorrelation function

⟨v(t) · v(t′)⟩ =
1

(2π)4

∫
d2q

∫
d2q′ ⟨ṽ(q, t) · ṽ(q′, t′)⟩ . (S.61)
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We write ⟨ṽ(q, t) · ṽ(q′, t′)⟩ as an integral over inverse time ω, ω′,

⟨ṽ(q, t) · ṽ(q′, t′)⟩ =
1

(2π)2

∫ ∞

−∞
dω

∫ ∞

−∞
dω′e−i(ωt+ω′t′)⟨ṽ(q, ω) · ṽ(q′, ω′)⟩ , (S.62)

where ⟨ṽ(q, ω) · ṽ(q′, ω′)⟩ was already calculated in IIIA. Finally, using
∫
d2q = 2π

∫
qdq, the velocity autocorrelation

becomes

⟨v(t) · v(0)⟩ =
a2v20
4π

∫ qm

0

dq q

[[[
(B +G)2q4(Ω2 −D2

r) + (Ω2 +D2
r)

2
]
cos(Ω t)− 2ΩDr(B +G)2q4 sin(Ω t)

]
e−Drt

[((B +G)2q4 +Ω2 −D2
r)

2 + 4D2
rΩ

2]

+

[[
G2q4(Ω2 −D2

r) + (Ω2 +D2
r)

2
]
cos(Ω t)− 2ΩDrG

2q4 sin(Ω t)
]
e−Drt

[(G2q4 +Ω2 −D2
r)

2 + 4D2
rΩ

2]

− (B +G)q2Dr(D
2
r +Ω2 − (B +G)2q4)e−(B+G)q2t

[(D2
r +Ω2 − (B +G)2q4)2 + 4(B +G)2q4Ω2]

− Gq2Dr(D
2
r +Ω2 −G2q4)e−Gq2t

[(D2
r +Ω2 −G2q4)2 + 4G2q4Ω2]

]
(S.63)

In Fig. S.3, we illustrate the normalized velocity autocorrelation functions, ⟨v(t) ·v(0)⟩/⟨v(0)2⟩ , as a function of time
t, in accordance with the equation detailed in the velocity autocorrelation continuum Eq. (S.63).

In Fig. S.3(a), the velocity autocorrelation for ABPs (Ω = 0) is depicted, highlighting the persistent decay of
the autocorrelation with a small rotational diffusion coefficient Dr. In Fig. S.3(b), we plot the velocity autocorrela-
tion for CAPs (Dr = 0), which demonstrates the sustained oscillatory behavior of the velocity autocorrelation.

We plot the velocity autocorrelation functions for CABPs in Fig. S.3(c) with varying Dr for constant Ω and in
Fig. S.3(d) with varying Ω for constant Dr. We observe decaying oscillatory behavior for low rotational diffusion
constant Dr ≤ Ω in Fig. S.3(c) and for high chirality Ω ≥ Dr values in Fig. S.3(d).

IV. HETEROGENEOUS MIXTURES

A. Binary mixtures

We consider the binary mixtures of two species A and B with packing fractions ϕA and ϕB respectively with total
packing fractions ϕ. Spatial velocity autocorrelation in Fourier space reads :

⟨v(q, t) · v(−q, t)⟩ =
ϕA

ϕ
⟨v(q, t) · v(−q, t)⟩A +

(ϕ− ϕA)

ϕ
⟨v(q, t) · v(−q, t)⟩B . (S.64)

Now, the velocity autocorrelation also reads :

⟨v(t) · v(0)⟩ =
ϕA

ϕ
⟨v(t) · v(0)⟩A +

(ϕ− ϕA)

ϕ
⟨v(t) · v(0)⟩B . (S.65)

In Fig. S.4, we plot the color map of the velocity autocorrelation functions given by Eq. (S.65) for binary mixtures,
characterized by the relative packing fraction of A, defined by ϕA/ϕ.

In Fig. S.4(a), we depict the binary mixtures of CABPs(Species-A) and ABPs(Species-B). The two limiting uniform
cases are: ABPs for ϕA/ϕ = 0 and CABPs for ϕA/ϕ = 1. As we increase the fraction of Species-A ϕA/ϕ leads to
oscillation with a time period T = 2π/Ω = 20π.

In Fig. S.4(b), we present the binary mixtures of CABPs with two different chiralities: Species-A with Ω = 0.1
and Species-B with Ω = 0.2. The two limiting uniform cases are: for ϕA/ϕ = 0, CABPs with chirality Ω = 0.2 set
time period T = 10π; and for ϕA/ϕ = 1, CABPs with chirality Ω = 0.1 set time period T = 20π. We observe the
dominance of two chiralities in the intermediate packing fractions around ϕA/ϕ ∼ 0.5.

In Fig. S.4(c), we present the binary mixtures of CABPs with two different rotational diffusion constants: Species-A
with Dr = 0.01 and Species-B with Dr = 0.1. The two limiting uniform cases are: CABPs (Species-B with Dr = 0.1)
for ϕA/ϕ = 0 and CABPs (Species-A with Dr = 0.01) for ϕA/ϕ = 1. We can clearly see the dominance of oscillatory
behavior as the fraction of particles with a high rotational diffusion coefficient (Species-B) decreases.

We compare the analytical velocity autocorrelation functions of the three types of binary mixtures discussed here
with ϕA/ϕ = 0.5 to their corresponding simulations, as shown in Fig. 6(a) of the main article.
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FIG. S.4. Visualization of the normalized velocity autocorrelation function ⟨v(t) · v(0)⟩/⟨v(0)2⟩ as a function of time t for
binary mixtures of active disks, obtained through the continuum elastic formulation. Panel (a) represents binary mixtures of
Species A (chiral active Brownian disks with Ω = 0.1 and packing fraction ϕA) and Species B (non chiral active Brownian disks
with Ω = 0 and packing fraction ϕ − ϕA). Panel (b) shows binary mixtures of Species A (chiral active Brownian disks with
Ω = 0.1 and packing fraction ϕA) and Species B (chiral active Brownian disks with Ω = 0.2 and packing fraction ϕ−ϕA). Both
species in (a) and (b) have rotational diffusion coefficient Dr = 0.01. Panel (c) illustrates binary mixtures of Species A (chiral
active Brownian disks with Dr = 0.01 and packing fraction ϕA) and Species B (chiral active Brownian disks with Dr = 0.1 and
packing fraction ϕ− ϕA). Both species in (c) have chirality Ω = 0.1.
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FIG. S.5. Effects of heterogeneity in chiral active solids. (a) Normalized velocity autocorrelation function defined by ⟨v(t) ·
v(0)⟩/⟨v(0)2⟩. Points are simulation results. The solid lines result from the continuum elastic formulation. (b) Spatial velocity
correlation functions in Fourier space defined by ⟨|v(q)|2⟩/Nv20 . The dashed and solid lines result from the continuum elastic
formulation and the normal mode formulation, respectively. We consider complex mixtures of particles with constant chirality
Ω = 0.1 and a mean rotational diffusion coefficient Dr = 0.01 with a uniform distribution spanning ±20% and ±40% of the
mean. (c) Normalized velocity autocorrelation function. Points are simulation results. The solid lines result from the continuum
elastic formulation. (d) Spatial velocity correlation functions in Fourier space. The dashed and solid lines results from the
continuum elastic formulation and the normal mode formulation, respectively. We consider complex mixtures of particles with
constant rotational diffusion coefficient Dr = 0.01 and a mean chirality Ω = 0.1 with a uniform distribution spanning ±20%
and ±40% of the mean.

B. Complex mixtures

We can extend the superposition results of binary mixtures to the complex situations, for n-component systems
with packing fractions ϕ1, ϕ2, ..., ϕn and total packing fraction ϕ =

∑n
i=1 ϕi. We can thus write the spatial velocity
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correlation in Fourier space as

⟨v(q, t) · v(−q, t)⟩ =

∑n
i=1 ϕi⟨v(q, t) · v(−q, t)⟩i∑n

i=1 ϕi
. (S.66)

And the velocity autocorrelation as

⟨v(t) · v(0)⟩ =

∑n
i=1 ϕi⟨v(t) · v(0)⟩i∑n

i=1 ϕi
. (S.67)

We utilize Eq. (S.66) and Eq. (S.67) to compute the spatial velocity correlation in Fourier space ⟨v(q, t) · v(−q, t)⟩
and the velocity autocorrelation functions ⟨v(t) ·v(0)⟩, respectively for a chiral active solid composed of n-component
complex mixtures.

We consider the complex mixtures of CABPs with uniform variations in the rotational diffusion coefficients Dr,
as illustrated in Figs. S.5(a,b) and with uniform variations in the chirality Ω, as shown in Figs. S.5(c,d). Remarkably,
the velocity autocorrelation functions in Fig. S.5(a) and spatial velocity correlations in Fourier space in Fig. S.5(b)
both remain invariant with uniform variations in rotational diffusion coefficient Dr. Additionally, the velocity au-
tocorrelation functions in Fig. S.5(c) are suppressed and spatial velocity correlations in Fourier space in Fig. S.5(d)
remain invariant with uniform variations in chirality Ω.

This suggests that variations in Dr do not impact the velocity autocorrelation functions while variations in Ω
do impact these functions. The spatial velocity correlations in Fourier space remain invariant under both conditions,
even with variations up to 40% (see Fig. 6(d) in the main article).
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