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1 Minimization of the total line energy and

numerical method

The total energy of the real disclination is obtained from an integral along
the disclination contour, which depends on depth, i.e.,

Fline total =

∫ l

0

fl(s)ds

=

∫ M
2

−M
2

fl(z(ξ))
√
1 + z′2dξ,

(S.1)

where l is the total length of the disclination between the two pinned ends, s
is the length along the disclination contour, z(ξ) is the bending shape (depth)
of the disclination with the ξ-axis running through and centered between two
pinned ends.

Minimization of Fline total based on variational calculus yields

− d

dξ

∂[fl(z(ξ))
√
1 + z(ξ)′2]

∂z(ξ)′
+

∂[fl(z(ξ))
√
1 + z(ξ)′2]

∂z(ξ)
= 0

− d

dξ
[fl(z(ξ))

z(ξ)′√
1 + z(ξ)′2

] +
dfl(z(ξ))

dz(ξ)

√
1 + z(ξ)′2 = 0

−dfl(z(ξ))

dz(ξ)

z(ξ)′2√
1 + z(ξ)′2

− fl(z(ξ))
z(ξ)′′

[1 + z(ξ)′2]3/2
+

dfl(z(ξ))

dz(ξ)

√
1 + z(ξ)′2 = 0

−fl(z(ξ))z(ξ)
′′ +

dfl(z(ξ))

dz(ξ)
[1 + z(ξ)′2] = 0

z(ξ)′′ =
1

fl(z(ξ))

dfl(z(ξ))

dz(ξ)
[z(ξ)′2 + 1].

(S.2)

The last row is Eq. (2) of the main text. We solve it using the solve bvp func-
tion from the scipy module of python, which solves boundary value problems
of differential equations.

In the main text we focus primarily on the solutions for disclinations with
two ends pinned on the same substrate. Here, Figure S1 shows the shape

3



of the disclination with two ends pinned on different substrates from the
numerical solution of Eq. (2) of the main text for various values of Dc and
M .

Figure S1: Profiles of disclinations with ends pinned on different substrates
predicted by Eq. (2) of the main text with various Dc and M values as
indicated by the legends.
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2 Model for energy balance

Figure S2 shows a schematic plot of a free disclination bending in a magnetic
field. The bold blue line is the free disclination at zero magnetic field; the
thin blue line is the surface disclination, and the black line is the bending
disclination due to the magnetic field. R is the radius of the circle fit to the
bent free disclination, l is the length of the free disclination, M is the distance
between two pinned ends, ACW and ACCW are the areas of adjacent clockwise
and counter-clockwise twisting domains, respectively (i.e., adjacent to the
free disclination). β is half of the angle spanned by the bent disclination
line.

Figure S2: Schematic plot of the bending disclination in the magnetic field.
The sizes are not to scale.

2.1 Geometry

The following relations are obtained from geometry

β = arcsin (
M

2R
). (S.3)

l = 2βR = 2R arcsin (
M

2R
). (S.4)
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ACCW = βR2 − M

2

√
R2 − M2

4

= R2 arcsin (
M

2R
)− M

2

√
R2 − M2

4
.

(S.5)

Differentiation with respect to R gives

dl = [2 arcsin (
M

2R
)− M

R

1√
1− M2

4R2

]dR. (S.6)

dACW = [2R arcsin (
M

2R
)− M√

1− M2

4R2

]dR = Rdl. (S.7)

By the conservation of area:

dACCW = −dACW . (S.8)

2.2 Energy balance

Optimization of the free energy Eq. (6) of the main text with respect to
perturbation of l yields

dF = fCCW
t LdACCW + fCW

t LdACW + fCCW
H LdACCW + fCW

H LdACW + fldl

= (fCW
t − fCCW

t )LdACW + (fCW
H − fCCW

H )LdACW + fldl

= (fCW
t − fCCW

t )LRdl + (fCW
H − fCCW

H )LRdl + fldl

(S.9)

Equilibrium condition of dF = 0 yields

(fCW
t − fCCW

t + fCW
H − fCCW

H )LR + fl = 0 (S.10)

2.3 Twisting and magnetic energy

The director n̂ lies parallel to the substrate. Let n̂ = (cosϕ, sinϕ, 0), where
ϕ varies from 0 to π/2 + θ in the CW regions and from 0 to −π/2 + θ in the
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CCW regions. As described in the main text, θ is the misalignment angle for
the rubbing directions being perpendicular to each other. n̂ has a uniform
twist in the vertical direction (ẑ) perpendicular to the substrate when it is
away from the disclination. Magnetic field is B = B(cos π

4
, sin π

4
, 0).

The average twisting energy integrated over sample thickness is

fCW
t =

1

2
K22(

π/2 + θ

L
)2. (S.11)

fCCW
t =

1

2
K22(

π/2− θ

L
)2. (S.12)

Thus,

fCW
t − fCCW

t = K22
πθ

L2
. (S.13)

The average magnetic energy integrated over sample thickness is

fCW
H = −1

2
∆χ

1

µ0

1

L

∫ L

0

[(n̂ ·B)2 −B2]dz

= −∆χB2

2µ0L
[−L+

∫ L

0

cos2(ϕ− π/4)dz]

= −∆χB2

2µ0L
[−L+

L

π/2 + θ

∫ (π/2+θ)

0

cos2(ϕ− π/4)dϕ]

= −∆χB2

2µ0

[−1

2
+

1

2

cos(2θ) + 1

π + 2θ
].

(S.14)

Similarly,

fCCW
H = −∆χB2

2µ0

[−1

2
+

1

2

cos(2θ) + 1

−π + 2θ
]. (S.15)

Thus,

fCW
H − fCCW

H = −∆χB2

2µ0

π[cos(2θ) + 1]

π2 − 4θ2
. (S.16)

2.4 Relation between curvature and the magnetic field

We next plug in the twisting and magnetic energy terms into the equilibrium
condition and rearrange to obtain:
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1

R
= −L

fl
(fCW

t − fCCW
t + fCW

H − fCCW
H )

=
L

fl
{−K22

πθ

L2
+

∆χB2

2µ0

π[cos(2θ) + 1]

π2 − 4θ2
}.

(S.17)

This is Eq. (7) of the main text.

3 Additional results of disclinations in the

magnetic field

3.1 Video of a bending disclination in the magnetic
field

A video file showing how the disclinations bend and eventually disappear un-
der an increasing magnetic field is included as a separate ESI file (15p9um.avi).
The sample cell thickness is 15.9 µm.

3.2 Curvature of other bending disclinations in the
magnetic field

Figures S3 (a-d) show the bending curvature of disclinations as a function
of magnetic field strength for samples with thickness 5.9, 7.2, 15.9, and 27.3
µm, respectively.

3.3 Misalignment angle θ

Figure S4 shows the deviation of the difference in anchoring directions as a
function of cell thickness from fitting the relation of bending curvature of the
disclination and the magnetic field strength to Eq. (7) of the main text.
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Figure S3: Curvature of bending disclination as a function of the magnetic
field strength. Solids lines are best fits using Eq. (S.17). Sample thickness L
is (a)5.9, (b)7.2, (c)15.9, and (d)27.3 µm.

Figure S4: Deviation of the difference in anchoring directions as a function
of cell thickness.
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4 Simulation Results

We use the Q-tensor based Landau-de-Gennes (LdG) numerical model which
simulates the relaxation of a nematic liquid crystal in a twist cell confinement.
Using a finite difference scheme, the free energy is minimized with a conjugate
gradient algorithm from the ALGLIB library for C++ [1, 2].
.
While the LdG model can be used for the general case of a biaxial LC, in our
simulation, we can simplify the Q tensor to the uniaxial limit. The phase
(LdG) free energy is then written in terms of the tensor:

Qij =
3

2
S(ninj −

1

3
δij), (S.18)

where ni is the ith component of the nematic director, δij is the Kronecker
delta, and S is the nematic order parameter. The nematic director can be
extracted from Q as the eigenvector corresponding to the largest eigenvalue,
S. The total free energy density is a sum of the background phase free energy
density and the elastic free energy density

ftotal = fphase + felastic. (S.19)

The phase free energy density is defined as:

fphase =
A

2
Tr(Q2) +

B

2
Tr(Q3) +

C

4
[Tr(Q2)]2, (S.20)

where Tr is the trace. The LdG parameters for 5CB are A = -0.172 × 106

J/m3, B = -2.12 × 106 J/m3, C = -1.73 × 106 J/m3. These parameters
correspond to an order parameter S0 = 0.53, which minimizes the phase free
energy. This order parameter is consistent with experimentally measured
data for 5CB at room temperature [3, 4]. The elastic free energy density is :

felastic =
L1

2

∂Qij

∂xk

∂Qij

∂xk

+
L2

2

∂Qij

∂xj

∂Qik

∂xk

+
L3

2
Qij

∂Qkl

∂xi

∂Qkl

∂xj

. (S.21)

The simulation allows the order parameter to decrease in the vicinity of the
disclination to minimize the total free energy. A “core” can be defined in
the simulation as the region surrounding the disclination where the order
parameter is lower than S0. For example, if the“core” is the region in which
the order parameter falls below 0.9S0, then such a “core” has a diameter of
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about L/10 in our simulations.

We can then equate the elastic free energy density in the uniaxial LdG theory
to the Frank-Oseen energy density equation:

fFrank =
K11

2
(∇ · n)2 + K22

2
[n · (∇× n)]2 +

K33

2
|n× (∇× n)|2, (S.22)

where Ks are the Frank elastic constants. We used K11 = 5.9 pN, K22 = 4.5
pN, K33 = 9.9 pN.

We simulate a twist cell of size 80x40x40 units (40x40x40 units for each twist
domain) with a mesh size of ∆x = 5 nm. For the case of infinite anchoring
strength we set the top and bottom surfaces with infinite planar anchoring
oriented perpendicular to each other. The simulation size is much smaller
than the experiment, but because the anchoring is infinite, the result is scale
free except for the defect in the center. In our simulation the disinclination
core size using the criterion S < 0.9S0 is much larger than in the experiment.

In order to better understand our experimental findings, we simulated NLCs
in twist cell confinement in order to examine the 3D director field between
two twist regions of opposite twist handedness.

The boundary conditions of the simulation consist of two flat surfaces with
planar anchoring and a 90◦ difference between the two. In order to create two
different twist regions, we start with an initial configuration of the director
twisting between the two surfaces, half twisting with one handedness and the
other half twisting with the other handedness, and then we let the nematic
LC relax. This is shown in Fig. S5.

When we let the nematic LC relax, we find that a straight disclination forms
in the center between the two surfaces; the straight disclination runs along
the boundary line between the two twist regions. The director above and
below the disclination adjusts so that there is a smooth 180◦ twist (about an
axis perpendicular to the disclination) as you travel 360◦ around the discli-
nation (about the axis of the disclination). A “slice” of the simulation in the
x-z plane is shown in Figure 4 of the paper, wherein we plot the component
of the nematic director in this plane.
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Figure S5: Initial configuration before the nematic LC is allowed to relax.
Blue ovals indicate the twisted nematic director field, straight red arrows on
the top and bottom indicate the anchoring orientations, twist arrows indicate
the handedness of twist, and the blue plane marks the boundary between the
regions of opposite handedness.

Using the simulation we can also create disclinations that do not align with
one of the two substrate alignment directions. By changing the initial con-
ditions of the simulation so that the substrates are at an angle to the plane
separating regions of opposite twist handedness (while still being perpen-
dicular to each other), the disclination again forms in the plane separating
regions of opposite twist handedness.

In Figure S6, the disclination is fixed and the rubbing directions vary. It
is clear that as the angle between the disclination and the bottom rubbing
direction increases, the entire director field rotates about an axis parallel to
the disclination. The contour levels shown in Figures S6(b-f)(bottom) at
different angles basically fall on top of each other. As pointed out in the pa-
per, all free energy considerations are independent of the orientation of the
disclination. This explains why the free disclinations appear the same in the
microscope regardless of their orientation relative to the rubbing directions.
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Figure S6: Simulation of the director configuration for disclinations oriented
at various angles to the rubbing directions. (a) Schematic diagrams of the
disclination at 0◦ and 22.5◦ with the bottom rubbing direction. The blue
plane is perpendicular to the disclination. (b-f) (top) Projection of the di-
rector configuration on a plane perpendicular to the disclination (blue plane
in (a)) for various angles. (b-f) (bottom) Contour levels of the angle between
the director and the blue plane shown in (a) for various angles.
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5 Bright Field Images

Figure S7: Bright field image of the twist disclinations. Some disclinations
are on the front surface (coverslip), some are on the back surface (microscope
slide), and some are in the bulk of the LC (free).

In Figure S7, the front surface disclinations are in focus, so short, free tran-
sition disclinations are visible when the disclination jumps between the two
glass surfaces. As the depth of focus moves deeper into the sample, the loca-
tion where the transition disclinations appear sharp moves from their front
surface pinned end to the back surface pinned end. When the depth of focus
reaches the back substrate, the back surface disclinations appear sharp.

14



6 POM Images

Figure S8: Polarized optical microscopy image of disclinations on the two
glass substrates and free disclinations.

The two types of twist domains and the three types of disclinations can
display different colors using POM depending on the orientation of the po-
larizers, the orientation of the sample, and the addition of a waveplate. In
Figure S8, the polarizers are perpendicular to each other with the sample
rotated to display the different disclination colors. No waveplate is added.
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7 Epifluorescence Images

A video displaying a Z-scan of an 8.64 µm thick sample in epifluorescence
mode is included as a separate ESI file (z-scan-epifluor.mp4). Initially the
disclinations on the top surface are in focus. As the Z-scan progresses, these
surface disclinations go out of focus and the free disclinations come into fo-
cus, starting at their ends and moving toward their midpoints. The x-y scale
of the image is 135 by 113 µm and Z-slices are separated by 0.27 µm.

Cross-section profiles of surface and free disclinations can be obtained using
appropriate Z-slices from the video.

Figure S9: Cross-section profiles for a near surface (left) and free (right)
disclination using epifluorescence. The data below each image are the inten-
sity as a function of horizontal position averaged vertically within the red
rectangle. The halfwidths of Lorentzian functions fit to the data are also
given.
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8 Confocal Images

The images below show three locations for the twist disclinations, running
along one of the two substrates (surface disclinations) or running through
the bulk of the liquid crystal (free disclinations).

Figure S10: Free disclinations appear in focus and straight for one slice of
a Z-scan using confocal microscopy. Left: Free disclinations appear bright
due to laser polarization and sample orientation. Surface disclinations on the
bottom substrate appear dark. Right: Free disclinations appear dark due to
laser polarization and a different sample orientation. Surface disclinations
on the top substrate also appear dark.

Analysis of the images is done using ImageJ. Any point along a disclination
can be brought into focus by choosing the proper Z-slice, producing an im-
age of the disclination in the x-y plane as shown in Fig. S10. Alternatively,
rotation of all the Z-slices about the z-axis followed by an orthogonal view
produces an image of the disclination in the z-ξ plane (shown in Figs. 3(a)
and (b) of the main text).

The width of a disclination in the x-y plane is measured by choosing the
Z-slice that brings the disclination into focus, and acquiring the intensity
profile across the disclination (averaging over a few pixels parallel to the
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disclination). See Fig. S11. A Lorentzian function is fit to the data and the
halfwidth is used as a measure of the extent of the disclination.

Figure S11: Cross-section profiles for a surface (left) and free (right) discli-
nation. The data below each image are the intensity as a function of hori-
zontal position averaged vertically within the red rectangle. The halfwidths
of Lorentzian functions fit to the data are also given.

The location of the disclination along the z-axis is measured using the z-axis
profile feature of ImageJ. First a small box, two or three pixels on a side, is
placed near the disclination. Its z-axis profile shows the sharp increase and
decrease in emission intensity at the coverslip and microscope slide surfaces,
respectively, and a slowly decreasing intensity in between. This serves as
the background profile and is shown in Fig. S12. The midpoints of the sharp
increase and decrease are used as the locations of the surfaces, a method that
is verified by setting the microscope to detect reflected light from the two
surfaces during a Z-scan. Second, the small box is moved to the disclination
and a z-axis profile generated. This serves as the disclination profile and is
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also shown in Fig. S12. The background z-axis profile is subtracted from the
disclination z-axis profile, revealing a peak or valley depending on the orien-
tation of the sample in the microscope (see Fig. S12). A Gaussian function is
fit to the peak or valley, and the center position and uncertainty are used as
the position along the z-axis (and its uncertainty) of the disclination at the
chosen point in the x-y plane. Data acquired in this manner are displayed in
Figs. 3(c)-(e) of the main text.

Figure S12: Determination of the z-position in the middle of the M = 42.1
µm free disclination in Fig. 3 of the article. The Z-profile for a point in the
x-y plane just “off” the disclination (background) and “on” the disclination
(disclination) are shown in (a), along with the location of the top and bottom
surfaces. The difference between the disclination and background profiles is
shown in (b), along with a Gaussian fit.
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