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Figure S1. Distribution of length of end-to-end vectors (top left) and x,y and z components (top right, bottom left and bottom right 
correspondingly).
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Figure S2.  versus t for pure polymer melts of different chain lengths.𝐺(𝑡)𝑡1/2

Figure S3. Fitting dependence of G’ and G’’ crossing points on polymer molecular weight with a power law. Data extracted from work 
of Auhl et al1.

Figure S4. SS age probability density for pure polymer of different length and fitting with skewnormal distribution. Skewness 
coefficients are indicated in the legend.



Diffusion coefficient computation

To investigate the effect of the melt chain length and the NP size on the NP diffusion we additionally 

simulate the diffusion of a single nanoparticle of different size (  = 2, 3, and 4b) in an entangled 𝑅𝑁𝑃

polymer matrix with chains of different length lengths from 24 to 96 beads for more than 10 

independent runs. We compute the nanoparticle diffusion coefficient using the linear region of long-

time MSD as follows: 

For the sake of consistency for simulations of particles of different size, we have not applied the 

corrections for the finite box size. The NPs were simulated in a box of at least two times its diameter.

In Figure S5A, we show the MSD for bare and grafted fillers with 𝜖 = 0 and 𝜖 = −0.6kBT and extract 

diffusion coefficients using Eq. (1). The diffusion coefficient somewhat reduces with the filler friction 

coefficients  (less than by 40-50% for considered bare and grafted fillers when  is increased by a 𝜉 𝜉

factor of 10), we conclude thus that the chosen values are sufficiently large to ensure well overdamped 

NP dynamics. The diffusion of grafted nanoparticles is more suppressed (Figure S5B), which can be 

explained by the fact that the introduction of grafted chains creates additional obstacles to free 

diffusion due to entanglements between free and grafted chains, thereby modifying the effective 

nanoparticle radius and local system viscosity with respect to the bulk melt2. The MSD curves in Figure 

S5C-D show that longer chains with higher viscosity (see inserts from Figure 2A of the main text) 

considerably decelerate NP diffusion (Figure S5C). A similar effect is observed when comparing 

different NP radii (Figure S5D) with the diffusion being hindered for larger . 𝑅𝑁𝑃

We now compare our case with the simulations of Kalathi et al3. First, we note that the tube diameter 

 in our case, so we are constantly in a regime of strong coupling between the 𝑑𝑇 ≈ 𝑏 𝑁𝑒 = 2𝑏

dynamics of NPs and the entanglement network.  In Fig. S6, we report  as function of  in different 𝐷 𝑁

〈(𝑟(𝑡) ‒ 𝑟0)2〉 = 6𝐷𝑡 (1)



representations, consistent with the Ref. 3. We find that  reduces with the melt chain length  𝐷 𝑁𝑚𝑓

and with the nanoparticle radius  (Fig. S5C). When plotting  versus , (Fig. S6B) 𝑅𝑁𝑃 𝐷8𝑅 3
𝑁𝑃 𝑁𝑚𝑓/4𝑅 2

𝑁𝑃

our data overlaps fairly but no plateau is found at large , reproducing the well-entangled case of 𝑁𝑚𝑓

the Ref. 3 ( ). To prove that effect of entanglement is indeed at the core of the observed slow-𝜎𝑁𝑃 > 8𝜎

down of diffusion, we computed  for nanoparticles with  embedded in a non-entangled 𝐷 𝑅𝑁𝑃 = 3

matrix (without slip-springs) with  and 96. As seen from our results (green stars on Fig. 𝑁𝑚𝑓 = 24, 48,

S6B),  in such systems effectively does not depend on  reproducing the effect seen in Ref. 3 for 𝐷 𝑁𝑚𝑓

the Stokes-Einstein regime of NPs of size much smaller than chain but much larger than , and the 𝑑𝑇

entangled system shows a much more suppressed diffusion. The macroscopic Stokes-Einstein relation 

is expected to recover in the limit of NPs size much larger than chain size and . Similarly to the Ref. 𝑑𝑇

3, we find that  increases faster with varying , indicating a pronounced effect of 𝐷𝜂𝑅𝑁𝑃 𝑁𝑚𝑓

entanglement (Fig. S6A). To access the macroscopic Stokes-Einstein regime, we would need to 

simulate systems with much shorter chains in boxes with a much bigger size to reduce the effect of 

periodic boundary conditions. In summary, we have shown that our simulation approach reproduces 

the results of Ref. 3 for the NP diffusion in the case of well-entangled matrices when the NP size is 

comparable or smaller to that of . 𝑑𝑇





Fig S6. (A) Diffusion coefficient multiplied by the NP radius and viscosity of the medium as a function of polymer chain length (B) 𝑁𝑚𝑓, 

Diffusion coefficient multiplied by the cube of NP diameter of NP as a function of polymer chain length  normalized by the  square 𝑁𝑚𝑓

NP diameter and (C) Diffusion coefficients of NP as a function of polymer chain length .𝑁𝑚𝑓
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Figure S5. (A) Mean square displacement for bare and grafted fillers (grafting density ) with  and -0.6kBT, respectively, 𝜎 = 0.2𝑏 ‒ 2 𝜖 = 0

the friction coefficient of filler is  and . (B) Diffusion coefficients for bare and grafted fillers with  and -𝜉 = 20000𝜏 ‒ 1
0 , 𝑅𝑁𝑃 = 3𝑏 𝜖 = 0

0.6kBT computed for  and , and The grafting density is  the free and grafted chain 𝜉 = 2000𝜏 ‒ 1
0 20000𝜏 ‒ 1

0 𝑅𝑁𝑃 = 3𝑏. 𝜎 = 0.2𝑏 ‒ 2,

lengths are 48  (C) Mean square displacement for different chain lengths of the polymer medium for bare fillers with and (D) . 𝑅𝑁𝑃 = 3𝑏 

Mean square displacement for different NP radius, .𝑁𝑚𝑓 = 64,  𝜉 = 20000𝜏 ‒ 1
0 ,  𝜎 = 0



Computation of the mean force on fillers

To demonstrate the presence of depletion forces in our modeled systems, we calculate the effective 

force acting on fillers as a function of distance, using the following protocol.

Initially, a rectangular simulation box is constructed containing two nanoparticles at a specified 

distance apart. The size of the simulation box is determined based on the volume fraction of fillers, 

with a volume fraction less than 12% deemed sufficiently large to disregard interactions from fillers in 

neighboring boxes via boundary conditions.

Figure S7. Mean square end-to-end vector  as a function of grafted chain length  with =48 (left) and as a function of free �⃗� 2
𝑒𝑒 𝑁𝑚𝑔 𝑁𝑚𝑓

chain length  with  =48 (right). Grafting density  b-2, volume fraction = 20% and .𝑁𝑚𝑓 𝑁𝑚𝑔 𝜎 = 0.2 𝜖 =‒ 0.6𝑘𝐵𝑇

Figure S8. Dependence of the average slip-spring age  (average over 3 independent simulation trials) on (A) different 𝜏𝑆𝑆

polymer-filler affinity with grafting density   and (B) grafting density   with  . Free and grafted 𝜖 𝜎 = 0.2𝑏 ‒ 2 𝜎 𝜖 =  ‒ 0.6 𝑘𝐵𝑇 

chain lengths are =48 =48 correspondingly.𝑁𝑚𝑓 𝑁𝑚𝑔



The study tests ten distinct distances between the surfaces of nanoparticles, specifically: 0.0, 0.2, 0.4, 

0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.5, 3.0, 3.5, and 4.0 b. During the direct interactions between fillers 

(described by Eq. 21 in the main paper) are discarded. Each distance is examined through three parallel 

simulations, each with different initial configurations of polymers. During these simulations, the fillers 

are permitted rotational motion but are restricted from translational movement. There are no Slip-

Springs added on the chains during Mean Force simulations (effect of the entanglements will be 

described in the next article).

All simulations commence with 1 million timesteps of relaxation, followed by an additional 100 million 

timesteps when the average forces acting on the fillers are measured and recorded. By the conclusion 

of the simulations, effective forces are averaged for each filler. Given the symmetry of the forces, the 

averages are calculated over both fillers within a single trial. These results are then averaged across 

three separate trials to determine the final values.

In Figure S8, we show the force acting on the right filler (FOF) for systems with different composition. 

The measured FOF is that on the right particle, thus negative sign indicates attraction between two 

fillers. For simplicity, bare fillers were considered. All curves exhibit zones of attraction, followed by 

repulsion that diminishes at long distances. In Figure S9A, the blue and red curves refer to nanoparticle 

radii of 2 and 3b, respectively. Both systems show strong attraction at distances below 1.2b; however, 

the drop in the red curve for bigger fillers is more pronounced, confirming the trend of the Asakura-

Oosawa model4. Figure S9B shows the effect of free chain length with noticeable differences in the 

position and intensity of the repulsion peak, making interaction with shorter chains more repulsive at 

closer distances, again consistent with the Asakura-Oosawa theory. These observations indicate that 

the described model exhibits expected depletion forces.



Figure S9. Effective polymer-mediated force acting on fillers along x direction in systems with (A) different radius of fillers  and  𝑅

, BT.  and (B) different free chain length  with BT.𝑁𝑚𝑓 =  16 𝜑 = 12,  𝜎 = 0, 𝜖 =‒ 0.6𝑘 𝑁𝑚𝑓  𝑅 =  2𝑏, 𝜑 = 12,  𝜎 = 0,  𝜖 =‒ 0.6 𝑘

Equilibrium structures of non-grafted nanoparticle systems

We show that our simulations can reproduce the relevant states of the phase diagram of bare non-

grafted fillers embedded in the polymer melt, as previously reported by K. Schweizer and coworkers 

by means of PRISM computations5,6 as well as MD simulations7. More specifically, at melt conditions 



close to the protein limit that is relevant for our work, the following equilibrium states of non-grafted 

fillers have been reported 5.

1)  Phase separation between the fillers and polymer matrix even at very low filler volume 

fractions in systems with purely repulsive interactions between the filler surface and polymers 

( ).𝜖 = 0

2) Steric stabilization and good dispersion of fillers in the intermediate range of attraction  due 𝜖

to the formation of adsorbed polymer layers at the filler surface (  of few kBT).𝜖

3) Tight polymer-bridged network of fillers due to very high attraction 𝜖.

We now reproduce such states in our simulations in the case of non-grafted fillers with variable surface 

affinity  First, we focus on the case of bare fillers with  at variable volume fractions. 𝜖. 𝑁𝐹 = 27 𝜖 = 0

Different volume fractions between 10 and 40% were simulated with chain of length  (with 𝑁𝑚𝑓 = 48

3 independent trials) for up to 200 million simulation steps, and the maximal cluster size as a function 

of time was traced to probe the binodal (Fig S10). Initially, all the fillers were placed at regular lattice 

positions. For volume fractions , we systematically find phase separation between the fillers 𝜙 ≥ 20%

and polymers, as indicated by the formation of a single aggregate in the system over time (snapshots 

of indicated systems are presented in Fig S11). The cutoff distance in percolation analysis was set at 

0.25b to capture surface-to-surface contacts. Simulations of systems with  are 𝜙 ≤ 15%

computationally much more demanding (more than 170k particles in the box), and we were not able 

to reach fully equilibrium states. Yet, for the volume fraction of 15%, the trend in aggregation is 

evident (in one of the trials, almost all the particles aggregated in a single cluster during around 150M 

time steps), indicating the instability of well-mixed filler states. These results are in full agreement 

with the results published by Zhou et Schweizer5. Furthermore, the phase diagram reported by Zhou 

et Schweizer, indicates phase separation even at marginally small volume fractions in melts at . 𝜖 = 0

We attempted to probe such state by reducing the filler number of filler in the box to  at 𝑁𝐹 = 20

%, yet the system sizes exceed 220k particles and are very slow to simulate with our simulation 𝜙 = 10



code. However, at 10% volume fraction we similarly found an increasing aggregation trend with the 

maximal cluster size spanning 100% of particles after 80M simulation steps in one of the simulation 

trials, suggesting instability of the filler phase. 

Fig S10. Maximal cluster size as a function of time in systems at variable volume fraction for = 0, , and . 𝜖 𝜎 = 0 𝑁𝑚𝑓 = 48



Fig S11. Snapshots of NP configurations with (A)  (B)  (C)  (D)  (E)  (F) .  , and 𝜑 = 15 𝜑 = 20 𝜑 = 25 𝜑 = 30 𝜑 = 34 𝜑 = 40 𝑁𝑚𝑓 = 48 𝜖 = 0 

𝜎 = 0.



We now show that our simulation reproduces the sterically stabilized nanocomposite states reported for 

higher bare filler attractions5. Similarly, we conducted a series of simulations with 27 bare fillers and 

varying polymer-filler interaction strengths (  = 0, -0.4, and -0.8 ), representing increasing attraction 𝜖 𝑘𝐵𝑇

between the polymer and filler surface. We present three snapshots of polymer density in the systems 

(Fig S12 (A-C)) to illustrate that, consistent with results of Zhou et Schweizer, the absence of implicit 

polymer-filler interaction first results in phase separation (Fig S12 (A)), gradually inducing a stabilized 

state upon increase attraction (Fig S12 (B) and (C)) due to the formation of an absorbed polymer layer 

at the surface. The maximum cluster size for (A) is 27, for (B) 20 and for (C) is 0 NP with respect to 

the chosen cutoff distance  = 0.25 . Additionally, we display the radial filler-filler distribution 𝑟𝑐𝑢𝑡 𝑏

function (Fig S12 (D)), which shows that  = 0 produces a distinct peak at distances close to the NP 𝜖

surface, which diminish with increased filler-polymer attraction. From  = -0.6 , another peak 𝜖 𝑘𝐵𝑇

emerges at a distance close to 2 , indicating the creation of the network mediated by the polymer 𝑏

absorption layer.

Fig S12. Snapshots of polymer density in systems with (A) =0 (B)  = -0.4  and (C)  = -0.8 and (D) Radial distribution 𝜖 𝜖 𝑘𝐵𝑇 𝜖 𝑘𝐵𝑇 

function for pairs NP-NP for systems with different . Other parameters are  and . 𝜖 𝜙 = 22, 𝜎 = 0 𝑁𝑚𝑓 = 48



Finally, we address the nanocomposite morphologies in the case of grafted fillers. In discussing the 

potential morphologies of polymer-based nanocomposites, it is important to note that defining the 

morphologies of clusters with 27 nanoparticles (NP) at high volume fractions may not always be 

convincing. However, there are a few cases where the structures of agglomerates can be clearly 

distinguished. In the work of Tang and Arya8, it was suggested that low grafting densities and relatively 

short, grafted chain lengths favor the formation of 1D structures, like linear trimers. To confirm, we 

provide additional snapshots of polymer/filler density for systems with  = 0 and  = 0.2 b-2 discussed 𝜖 𝜎

in the main text and can observe that NPs forms linear clusters (as also indicated by nearest neighbor 

distributions in Figure 6 of the main text).

Fig S13. Snapshots of polymer density in system  =0,  , = 0.2 b-2, Nmf = 48 and 𝜖 𝜙 = 22 𝜎
Nmg=48

1 Auhl D, Ramirez J, Likhtman AE, Chambon P, Fernyhough C. Linear and nonlinear shear flow behavior of 



monodisperse polyisoprene melts with a large range of molecular weights. J Rheol. 2008;52(3):801-835. doi: 

10.1122/1.2890780
2 Lin CC, Griffin PJ, Chao H, Hore MJA, Ohno K, Clarke N, et al. Grafted polymer chains suppress nanoparticle 

diffusion in athermal polymer melts. J Chem Phys. 2017;146(20):203332. doi: 10.1063/1.4982216
3 Kalathi JT, Yamamoto U, Schweizer KS, Grest GS, Kumar SK. Nanoparticle Diffusion in Polymer 

Nanocomposites. Phys Rev Lett. 2014;112(10):108301. doi: 10.1103/PhysRevLett.112.108301
4 Asakura S, Oosawa F. Interaction between particles suspended in solutions of macromolecules. J Polym Sci. 

1958;33(126):183-192. doi: 10.1002/pol.1958.1203312618
5 Hooper JB, Schweizer KS. Contact Aggregation, Bridging, and Steric Stabilization in Dense Polymer−Particle 

Mixtures. Macromolecules. 2005;38(21):8858-8869. doi: 10.1021/ma051318k
6 Hall LM, Jayaraman A, Schweizer KS. Molecular theories of polymer nanocomposites. Curr Opin Solid State 

Mater Sci. 2010;14(2):38-48. doi: 10.1016/j.cossms.2009.08.004
7 Zhou Y, Schweizer KS. PRISM Theory of Local Structure and Phase Behavior of Dense Polymer 

Nanocomposites: Improved Closure Approximation and Comparison with Simulation. Macromolecules. 

2020;53(22):9962-9972. doi: 10.1021/acs.macromol.0c02077
8 Tang TY, Arya G. Anisotropic Three-Particle Interactions between Spherical Polymer-Grafted Nanoparticles in 

a Polymer Matrix. Macromolecules. 2017;50(3):1167-1183. doi: 10.1021/acs.macromol.6b01936


