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Supplementary Information 

S.1 Simulation Details. 

We have applied constant pressure Metropolis Monte Carlo simulations of systems composed of 

4096N =  particles. Systems of half and/or double size were also simulated at certain pressures to 

study system size effects. On average, during a MC cycle, a random rotation/translation is 

attempted for each of the particles, chosen in a random fashion, as well as a random change of the 

system’s volume is attempted. Random particle moves are accepted if they do not result to overlaps 

between the particles. Similarly, free of overlaps volume changes, n oV V V = − , are accepted with 

probability ( )*min 1,exp[ ln( / )]n oP V N V V−  + .The volume changes are performed allowing the 

lengths of the simulation box sides to fluctuate independently.  

The size of the periodically modulated systems in these simulations should be large enough to 

ensure that at least one side of the simulation box is an integer multiple of the inherent periodicity 

length of system. Furthermore, none of the box lengths should be less than twice the cut-off 

distance of the intermolecular potential. For hard bodies this is given by the distance between the 

two most distant points on the surface of the particle. Accordingly, the cutoff distance cd  for a 

pair of curved hard rods used in the simulations is 
sin( / 2)

/ 1 2c

L
d D

D


= +


. For / 19L D =  and 

Ψ 1.31=  one obtains 18.67cd D= . Therefore, none of the simulation box sides can be less than 
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2 37.4cd D , otherwise ghost interactions may creep in as a given particle will be allowed to 

interact simultaneously with a second particle and with the periodic image of that same particle. 

This in turn introduces fictitious (self-ordering) fields that could bias severely or inhibit the 

accessible pathways connecting phases with substantially different types of ordering, as is the case 

in the present systems.  

Denoting by 
12 12
ˆ( , )r   the contact distance (i.e. the smallest distance before they start to overlap) 

between two hard particles having relative orientation, 
12  and direction of their relative positions 

along 
12r̂ , 

cd  is simply the maximum value of 
12 12
ˆ( , )r  . Under thermodynamic conditions of high 

orientational ordering of a hard body system, where the orientations of the individual particles 

exhibit a narrow distribution about a certain direction, 
cd  may be obtained for interparticle position 

vectors also narrowly distributed along a given direction. In these cases, a carefully chosen 

simulation box-size, with only one box-side larger than 
cd , could correctly simulate the system 

under the specific thermodynamic conditions. However, any phase transition resulting in a 

different distribution of the molecular orientations should be treated very cautiously. The 

simulations presented here are free of box-size conflicts with 
cd  and the accompanying fictitious 

fields.  

Several structures of highly packed crystalline states were used as the initial, high-pressure state. 

Expansion runs from the highly ordered close packed states were performed initially up to the 

melting point at which the positionally ordered phase melts into a positionally disordered state. 

This new state is then used as the initial state for further expansion runs to locate other possible 

phase transitions. The obtained pressure vs packing fraction equation of state, presented in the 

Figure 3 of the main text, indicates that in the reduced pressure range * 1 7P = −  the system exhibits 

three distinct phases, with isotropic, nematic and smectic-like structures.  

Typical snapshots of the three phases are given in Fig. SI.1. We note here that compression runs 

from the isotropic phase suggest that an ordering transition is taking place at pressures slightly 

higher than the pressure *

NIP  found in the expansion runs. The structure of the first ordered phase 

during compression runs is highly defective and depends strongly on the size and relative 

anisotropy of the sides of the simulation box. Similarly, compression runs starting from the 
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modulated nematic phase do not show a sharp phase transition to a smectic phase. Instead, 

positional correlations develop gradually, and the system organizes into a fragmented phase with 

a high degree of local positional and orientational order (see Fig SI.1(d)). As this work is focussed 

on the structure and symmetries of the nematic phase, extensive studies on the structure of the 

highly ordered states are not presented here. 

 

 

 

(a) (b) (c) 

(d) (e) 

Figure SI.1 Simulation snapshots: (a) Isotropic state at 
* 2.15P = , (b) Modulated nematic at 

* 2.25P =  and at 
* 4.00P =  (c); (d) super compressed fragmented state at 

* 5.00P =  obtained by 

continuous compression of a modulated nematic state; (e) Smectic state at 
* 5.00P =  from 

expansion runs. The colouring of the particles is associated with different orientations of the 

molecular y-axis. The RGB colouring scheme has been chosen as [ , , ] 0.5 [ , , ] / 2X Y ZR G B y y y= +

, with, Ay  the projection of the polar molecular axis along the sides of the simulation box, 

0 , , 1R G B  .The length, in units of D, of the sides of the simulation box fluctuate slighgthly 

about the ( , , )x y zL L L  values: (a) (50.5, 52.8, 110.2); (b) (49.6, 49.3, 106.5); (c) (42.9, 43.6, 97.2); 

(d) (41.2, 41.3, 96.3); (e) (42.3, 42.8, 88.5) 
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Figure SI.2. Evolution of the Smectic to Nematic and the Nematic to Isotropic phase change as function of 

the MC-cycles. The initial states are equilibrated at pressures for which the smectic (left) and the nematic 

state (right) are stable. These pressures are then reduced by 
* 0.05P =  and the systems are left to evolve 

to their equilibrium. 

In Fig. SI.2 we present the evolution of the packing fraction, the size of the simulation box and the 

main orientational order parameters along the smectic to nematic (left panel) and across the 

nematic to isotropic (right panel) phase transitions. * 4.40P =  is the lowest simulated pressure for 

which a mechanically stable smectic phase appears, even after very long runs 8( 10  MC-cycles), 

having an average packing fraction 0.371 . On reducing the pressure to * 4.35P =  the system 

reduces gradually its packing fraction down to 0.368  while preserving its smectic structure. 

Below this packing fraction, estimated as the lowest density for which the smectic phase is 

mechanically stable, the system melts into a modulated nematic phase showing an average packing 
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fraction 0.363 .  

In the smectic phase the box accommodates four smectic layers with layer spacing ~ 1.22L  ; in 

the nematic phase it accommodates two helical pitch-lengths with ~ 2.55d L . Interestingly the 

( ) ( )/ ~ 2%
NSm N

 
−

  change of the packing fraction is a result of an expansion of the system by 

( ) ( )/ 7%ZSm Nz N
L L

−
   along the direction of the layer normal combined with a lateral 

contraction by ( ) ( )/ 2.4%.
Sm N N

L L⊥ ⊥−
  −  This inherently very anisotropic change of the volume 

of the system across the N-Sm transition explains the difficulty in  obtaining a direct nematic to 

smectic phase transition during compression runs. The change of the packing fraction at the 

transition between the N phase at * 2.20P =  and the isotropic phase at * 2.15P =  is about 10% , a 

relatively high value that reflects the high compressibility of both phases close their phase 

transition. However, contrary to the considerably anisotropic expansion of the volume across the 

Sm-N phase change, the expansion of the system across the N-I transition shows a practically 

isotropic volume change, ( ) ( ) ( ) ( )/ /ZN I I N I IzL L L L⊥ − ⊥−
   .  

The graphs at the bottom of Fig. SI.2 show the evolution of the main global orientational order 

parameters that measure the average (over the entire simulation box) degree of the nematic like 

orientational order of the long molecular axis (
( )zS ), the biaxiality of the phase (

( )zS⊥ ), and its 

form chirality (
*S ). Apparently, the Sm-N phase transition is a transformation from the high-

pressure phase (smectic), which is biaxial and achiral, to a low-pressure phase (nematic) which 

exhibits form chirality and is globally uniaxial.  
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S.2  Orientational Order Parameters for Curved Rod Nematics Showing Local C2 

Symmetry.  

S2.1 Order Parameters of First Rank.  

There are generally 9 order parameters of first rank, ˆâ A , with the angular brackets indicating 

ensemble averaging, â  denoting any one of the three molecular axes, ˆ ˆ ˆ, ,x y z  and Â  any of the 

local frame axes ˆ ˆ ˆ, ,h l m , with m̂ chosen to be the polar director and ĥ  the direction of the 

modulation (see also S3.3). As a result of the combination of the local C2 symmetry of the phase 

and the C2V symmetry of the bent-rod molecules, the only non-vanishing of the 9 order parameters 

is ˆ ˆp y m⊥   .  

S2.2 Order Parameters of Second Rank.  

The second rank parameters describing the orientational order of the three molecular axes  

ˆ ˆ ˆ ˆ, ,a x y z=  are generally ( )( )( )

,
ˆ ˆˆ ˆ3 / 2a

AB A BS a A a B =   − . These form three sets (one for each 

molecular axis â ) of symmetric “ordering matrix” elements. Of those 18 elements in total, when 

expressed in the frame ˆ ˆ ˆ, ,h l m , the following 12 survive the implications ( ( ) ( ) 0a a

hm lmS S= = ) of local 

phase symmetry: ( ) ( ) ( ) ( ), , ,a a a a

hh ll mm hlS S S S  and of those, only 5 are independent, due to the geometrical 

identities   

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,

0a a a a a a a

hh mm ll hl hh ll mm

a x y z a x y z a x y z

S S S S S S S
= = =

= − = = + + =       (S1) 

Each of the above three ordering matrices, ( )a

ABS , can readily be diagonalized to obtain the principal 

axes and  corresponding principal values : m̂ , being the local phase-symmetry axis,  automatically 

constitutes a principal axis of all the second rank tensors; therefore the other two principal axes,  

say 
( ) ( )ˆ ˆ,a a

p ph l  are obtained by a single rotation of ˆ ˆ,h l  about m̂  by an angle ( )a  satisfying  the 

condition ( ) ( )

( ) 0a a
p p

a

h l
S = . The value of this angle is determined from the values of the order parameters 

in the ˆ ˆ ˆ, ,h l m  frame according to 

  
1

( ) ( ) ( ) ( ) ( )tan 2 4 3a a a a a

hl hh mm llS S S S
−

 = − + −  .        (S2) 
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Obviously, the values of ( )a

mmS  remain unaffected by this rotation. The principal values 

corresponding to the axes 
( ) ( )ˆ ˆ,a a

p ph l  are given by 

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

1 1 1
1 1

2 cos 2 cos 2

1 1 1
1 1

2 cos 2 cos 2

p p

p p

a a a

h h hh ll

a a a

l l ll hh

S S S

S S S

 

 

 

 

    
= + + −    

    

    
= + + −    

    

  .    (S3) 

The three principal values  
( ) ( ) ( ), ,

p p p p

a a a

h h l l mmS S S  are not independent as their sum vanishes. Accordingly, 

the ordering tensor in its principal axes frame is often represented by the largest of the three 

principal values, defining the ordering ( )
2

( ) ( )ˆ ˆ3 1 / 2a aS e a  −  along the major principal axis, 

( )ˆ ae , and the difference of the other two, in ascending order, defining the biaxiality 

( ) ( )
2 2

( ) ( ) ( )ˆ ˆ ˆ ˆ(3 / 2)a a aS e a e a ⊥ ⊥ ⊥   −   with respect to the principal axes ( ) ( )ˆ ˆ,a ae e ⊥ ⊥
.  In this 

representation, the three principal axes ( )ˆ ae , ( ) ( )ˆ ˆ,a ae e ⊥ ⊥
simply constitute a relabelling of the axes 

( ) ( )ˆ ˆ,a a

p ph l , m̂ in ascending sequence of the respective principal values  
( ) ( ) ( ), ,

p p p p

a a a

h h l l mmS S S . 

S2.3 Vector-pseudovector order parameters.  

The order parameters ( )a

ABS  fully describe orientational ordering in nonpolar nonchiral LC phases 

to lowest (2nd) rank; the 1st rank Aa  describe additional features of the polar phases. Order 

parameters detecting the existence of structural chirality in the phase can be formulated. Thus, the 

local C2 phase symmetry combined with the C2V molecular symmetry, give rise to nontrivial values 

for some components of the vector-pseudovector ordering tensors *( )a

ABS . With the y-axis assigned 

as the C2 molecular axis, these are defined as   

 ( ) ( ) ( ) ( )*( ) 1 ˆ ˆˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
2

a

ABS a A a y B a B a y A      +   
   

,  (S4) 

they are represented by symmetric and traceless matrices and present invariance under improper 

rotations of the molecule. Clearly *( )y

ABS  is null and therefore *( ) *( ) *z x

AB AB ABS S S= −  . By the C2 local 

symmetry of the phase, the only non-vanishing components of the vector-pseudovector ordering 
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tensor in the ˆ ˆ ˆ, ,h l m  frame are * * * *, , ,hh ll mm hlS S S S  . Due to the identity * * * 0hh ll mmS S S+ + = ,  there are 

only three independent vector-pseudovector order parameters which can be conveniently chosen 

to be  * * * *; ;hh mm ll hlS S S S− . The first two of these components describe correlations between the tilt of 

the molecular axes x̂ , ẑ  and the polar order of the molecular symmetry axis ŷ  in the local ˆ ˆ ˆ, ,h l m

phase axes, while the third includes, in addition, polarity -  biaxiality correlations. 

Consider *

hhS . With ( )( )( ) ˆ ˆˆ ˆz

ht h z h z=    denoting the pseudovector describing the angular deviation 

(instantaneous “tilt”) of the molecular axis ẑ relative to the phase axis ĥ  it follows that 

 ( )( ) ( )( )* ( ) ( ) ( ) ˆ ˆˆ ˆ ˆ ˆ ˆz z z

hh h h hS t y t m y m t l y l=  =   +   .      (S5) 

Accordingly, *

hhS  measures the ensemble average of the projection of the molecular symmetry axis 

ŷ  along the tilt pseudovector ( )z

ht , or , equivalently, the correlations between the tilt components 

along the axes normal to ĥ  (i.e. l̂  and m̂ ) and the respective polar ordering of the molecular 

symmetry axis along those phase axes.  Note that while local phase symmetry implies  

( ) ( )ˆ ˆˆ0z

ht l y l = =   , there is no such implication for either of ( )( ) ˆz

ht m  or ( )ˆ ˆ .y m   

Analogously for the order parameters * *,ll mmS S  we obtain 

( )( ) ( )( )* ( ) ( ) ( )ˆ ˆ ˆ ˆˆ ˆ ˆz z z

mm m m mS t y t h y h t l y l=  =   +         (S6)  

and  

( )( ) ( )( )* ( ) ( ) ( )ˆ ˆˆ ˆ ˆ ˆ ˆz z z

ll l l lS t y t h y h t m y m=  =   +   ,      (S7) 

showing the respective tilt-polarity correlations relative to the appropriate phase axes.  

The *

hlS order parameter describes additional correlations, 

( ) ( ) ( ) ( )

( )( ) ( )( ) ( ) ( ) ( )

*

2 2

1 ˆ ˆ ˆ ˆˆ ˆˆ ˆ ˆ ˆ
2

1 ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ
2

lh

z z

h l

S z h z y l z l z y h

y h t l y l t h y m z h z l

   =    +   
   

 = −   +   +   − 
  

     (S8) 

that is, polarity-biaxiality correlations, in addition to tilt-polarity correlations referring to crossed 
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( ˆ ˆ,l h and ˆ ˆ,h l ) axes. 

The matrix associated with the ordering tensor can be diagonalized in analogy to Eqs(S2 and 3) 

through a rotation about m̂  to obtain the principal axes 
* *ˆ ˆ,p ph l , the rotation angle * and the 

respective principal values with 
* * * 0

p p p ph h l l mmS S S+ + = . 

S.3 Orientational Pair Correlation Functions for Curved Rod Nematics of Local 

C2 Symmetry and Roto-Translational Modulations in One Dimension 

The calculation of local order from simulations of periodically modulated phases encounters 

certain technical ambiguities stemming from the interplay between the periodicity of the 

modulation and the periodic boundary conditions imposed on the simulated system. Pair 

correlation functions offer a consistent way to remove such ambiguities from the calculation.  

In the case of the one-dimensional modulations of the present systems this can be readily 

understood: With the modulation taking place along the Ẑ -axis,  the order parameters Aa , ( ) ,a

ABS

and *

ABS  are formed by ensemble averages of various combinations of the projections of the 

molecular axes a along phase axes A,B, at some slab of fixed Z-value. However, the respective 

correlation functions involve projections of the molecular axes of molecules in a given slab at Z1 

along the molecular axes of other molecules located in a second slab at Z2 and thus depends on the 

separation Z1-Z2, irrespective of the absolute positions of the two slabs.  

The pair correlation function associated with the polar order parameter  ˆ ˆp y m⊥   are presented 

in the main text. The functions associated with ( ) ,a

ABS and *

ABS  are defined as follows. 

S3.1 Functions describing the correlation of 2nd rank ordering.  

These are defined by: 

( )( )
,( ; )

2

,

3 1 ˆˆ ˆ( ) ) ( ) ) ( )
2 2

(

( )

ˆ( )

ˆ ˆ(i i ac bd ij

i jac b

j

j

i

j

d

i

j

a c Z

g

b d

Z

Z

  



 
−  −  

 


=

 − 





rrr r

r

r

 ,  (S9) 
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where ,ˆ ˆ, ˆ,b̂a c d denote molecular axis directions at the indicated positions. For molecules of C2V 

symmetry, such as the bent tubes in Figure 2 of the main text, the surviving functions are those 

with a=c and b=d and therefore there are 9 non-vanishing correlation functions of rank 2. 

Moreover, as a result of the 6 identities  

( ; ) ( ; )

2 2( ) 0 ( ); , , ,aa bb aa bb

a b

g Z g Z a b x y z= = =  ,  ,    (S10)  

only three of these non-vanishing functions are independent.  

S3.2 Functions describing the correlation of vector-pseudovector ordering.  

With ŷ chosen to denote the molecular symmetry axis, these are generally defined by  

( ) ( ) ( )( )
( ) ( ) ( )( ),

*( ; )

,

ˆ ˆ ˆ ˆ( ) ) ( ) ( ) ) ( )
ˆ

()

ˆ

( )
ˆ ˆ ˆ ˆ( ) ( ) ( ) ) (

(

)
3

( )
2

ˆ

ˆ(

( )

ˆ ˆ(

i i i

ij

i j
i i i

ac

j

b

j

j j

j j j
d

ij

i

a c y y

Z

a c y y

g

b d

d

Z

Z

b





   +
 

 −  
  

 
=

 − 

 

 




r r r

r r

r

r

r r r

r

r r r

,    (S11)  

in the notation of eqs(S9 and 10). Here only the a=c and b=d combinations survive the C2 

molecular symmetry. Clearly *( ; ) *( ; )( ) ( ) 0yy aa aa yyg Z g Z= = . 

Furthermore, *( ; ) *( ; )( ) ( )zz zz xx xxg Z g Z=  and the identity 

*( ; ) *( ; ) ( )

1

2
( ) ( ) ( )

3

aa bb aa bb yy

a b

g Z g Z g Z= =  ,       (S12)  

imply that, given ( )

1 ( )yyg Z , there is essentially just one independent vector-pseudovector 

correlation function, which, for simplicity, is denoted by * *( ; )( ) ( )zz zzg Z g Z .   

S3.3 The roto-translation model of modulated order.   

Briefly, this one-dimensional modulation model, predicted by the molecular theory of the polar-

twisted nematic phase (NPT) (see refs 11 and 12 of the main text), is formulated by assuming that 

at each Z position (along the modulation axis Ẑ ) there is a local frame of axes with respect to 

which the principal values of the order parameters are the same, independent of Z . What changes 
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on translating along Z is the direction of the respective principal axes, following a simple rotation 

about  Ẑ  by an angle  , proportional to the translation, i.e. kZ = , with 2 /k d  the 

wavenumber of the roto-translation modulation and d  its periodicity length (“pitch”).  

With ˆ ( )m Z defining the loacal direction of maximal alignment, and choosing the ĥ  of the local 

frame to be parallel to the modulation direction Ẑ , in accord with ˆ ( )m Z  remaining perpendicular 

to the modulation direction,  the roto-translational modulation implies that, on moving along the 

modulation axis, (i) the two local axes ˆˆ ,m l rotate about that direction by an angle proportional to 

the displacement of the modulation, i.e.   

ˆ ˆˆ ( ) cos( ) sin( )m Z Y kZ X kZ= −  ; ˆ ˆ ˆ( ) cos( ) sin( )l Z X kZ Y kZ= + ,    (S13)  

and (ii) the values of the order parameters measuring the degree of orientational ordering of the 

molecules along the axes ˆ ˆ ˆ, ,h l m  remain invariant to displacements along ˆẐ h . The choice of the 

ˆ ˆ,X Y  axes,  to form the orthogonal macroscopic frame ˆ ˆ ˆ, ,X Y Z , is obviously coupled to the choice 

of the origin 0Z = .    

S3.4 The form of the correlation functions according to the roto-translation model. 

The detailed information obtained directly from the simulations for the correlation functions, 

regarding the structure of the modulated nematic and the local order parameters of the phase, is 

used to test the predictions of the roto-translation model. Perfect agreement is found for all the 

correlation functions computed.    

Consider, for example, ( )

1 ( )yyg Z . It can be calculated theoretically assuming roto-translational 

symmetry of the polar axis m̂ along ĥ . Expressing the molecular axes ˆ ˆ,i jy y in the local axes 

associated with two planes perpendicular to ĥ  and positioned at 1Z Z=  and 2Z Z=   we have

( )( ) ( )( ) ( ) ( )( )1 2 1 2 2 1
ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) cosi j i j i j i jy y y m Z y m Z y l Z y l Z k Z Z y h y h  =   +   − +  

 
. 

Taking then into account the C2 symmetry about m̂ we obtain upon averaging 

( )
2

2 1

, ,

ˆ ˆ ˆ ˆ/ cosi j

i j i j

y y y m k Z Z =  −  . Therefore, with the notation introduced in S2.1 for 
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the polar order parameter we have    

( ) 2

1 ( ) cosyyg Z p kZ⊥=       .    (S14) 

Theoretical expressions, within the roto-translation model, for the three independent correlation 

functions ( )

2 ( )xxg Z , ( )

2 ( )yyg Z  and ( )

2 ( )zzg Z  can be obtained by an analogous procedure. Consider 

for example ( )

2 ( )xxg Z . On expressing the orientations of ˆ ˆ,i jx x in  local axes associated with planes 

at 1Z Z=  and 2Z Z=  we have, taking into account the local C2 symmetry about m̂ , 

( )

( ) ( )( ) ( ) ( ) ( ) ( )

2

, ,

2 2
22 22

2 1 2 1

3 1
ˆ ˆ /

2 2

3 1 3ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ3 cos cos 2
2 2 4

i j

i j i j

x x

x h x h x l k Z Z x m x l k Z Z

    
 − =   

    

 
=  − +   − +  −  − 

 

 
 

and similarly for the ˆ ˆ,y z  axes. Therefore, we have the final expressions 

  ( ) ( ) ( )
2 2 2

( ) ( ) ( ) ( ) ( )

2

4 1
( ) cos cos 2 , , ,

3 3

aa a a a a

hh lh mm llg Z S S kZ S S kZ for a x y z= + + − = .       (S15) 

This relates the correlation functions to the values of all the second rank orientational order 

parameters that describe the C2 local orientational order, and verifies that the order parameter 

values are indeed consistent with the constraints in Eq(S1). Note that opposite signs of the order 

parameter ( )a

lhS  correspond to domains of opposite chirality. 

Similarly, the vector-pseudovector correlation function *( )g Z  has the following theoretical 

expression within the roto-translation model   

 ( ) ( ) ( )
2 2 22* * * * *4 3 1

ˆ ˆ( ) cos cos 2
3 4 3

hh hl mm llg Z S S y m kZ S S kZ
 

= + +  + − 
 

 .  (S16) 

S.4 Modulated and Global Orientational Order 

In view of the eqs(S13), describing the transformation of the local axes implied by the roto-

translation symmetry, the order parameters of section S.2 can be expressed in the phase-fixed 

macroscopic frame ˆ ˆ ˆ, ,X Y Z  as follows: 

sin( ); cos( ); 0X Y Zp p kZ p p kZ p⊥ ⊥= = = ,       (S17)  
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for the polar order parameter in S2.1. 

( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1
cos 2 sin 2 cos

2 2 2

1 1 1
( ) sin 2 cos 2 sin

2 2 2

cos sin

a a a a a a

hh ll mm ll mm lh

a a a a a a a

AB ll mm hh ll mm lh

a a a

lh lh hh

S S S kZ S S kZ S kZ

S Z S S kZ S S S kZ S kZ

S kZ S kZ S

 
− + − − 
 
 = − − − −
 
 
 
 
 

 

            (S18)  

for the 2nd rank ordering tensors in section S2.2, with , , ,A B X Y Z= , and similarly for the vector-

paseudovector order paramaters in section S2.3, only with the superrscript ( ) ( ), ( ), ( )a x y z=  

replaced by *. 

On averaging Eq(S17) over the Z-variable within a full pitch length 2 /d k= , both alternating 

components of the polar order parameter yield vanishing average values, i.e.  0X Yp p= = , with 

the bar indicating Z-averaging. The same averaging of the expression in Eq (S18) yields the 

uniaxial ordering tensors 

( ) ( ) * *

1 1
0 0 0 0

2 2

1 1
0 0 ; 0 0

2 2

0 0 1 0 0 1

a a

AB hh AB hhS S S S

   
− −   
   
   = − = −
   
   
   
   
   

,     (S19) 

 with principal axis along Ẑ . 

The components of the Z-averaged tensors can be independently calculated from the simulations 

by sampling within the entire simulation box. For example, the average ordering tensor 
( )a

ABS  of 

the MC generated configurations of the systems is calculated as the average over MC cycles of 

( ), , ,

1

1
3 / 2

N

i A i B A B

i

a a
N


=

− , where N  is the number of particles and i  runs over all the particles. 

The eigenvalues, and the corresponding eigenvectors, of the resulting 
( )a

ABS are calculated and 

sorted out in descending order.  
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Direct spatial averaging of the orientational correlation functions yields, according to Eqs(S15 and 

16) ( )
2

( ) ( )

2

aa a

hhg S= and ( )
2

* *

2 hhg S= . These relations are reproduced consistently with those in Eq 

(S19) by direct calculation from the simulations at various pressures.   

 


