
1

Electronic Supplementary Information

Computer Vision for High-Throughput Analysis of Pickering Emulsions

Kieran D. Richardsa†*, Ella Comisha and Rachel C. Evansa*

a Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage

Road, CB3 0FS, U.K.

† Current address: Department of Chemistry, Swansea University, Singleton Park, Swansea,

SA28PP, U.K.

* Corresponding author: Prof. Rachel C. Evans (rce26@cam.ac.uk); Dr Kieran D. Richards
(k.d.richards@swansea.ac.uk)

TABLE OF CONTENTS

TABLE OF CONTENTS 1

1 Synthetic images 2

2 Emulsion composition 4

3 Software parameters 6

a) Blur 7
b) Sobel Operation 9
c) Canny Edge Detection 9
d) Circle Hough Transform 9

4 References 9

Supplementary Information (SI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2025

mailto:rce26@cam.ac.uk

2

1 Synthetic images

Figure S1: Synthetic images (800 × 800 pixels) representing different Pickering emulsion
characteristics. (a) – (f) differ in polydispersity, overlap and spatial configuration. (g) and (h) are
referred to as “limited contrast emulsions” and represent examples where emulsions do not
appear as dark, well defined lines. (i) shows simulation of a focal plane where droplets appear
less defined toward edges of the image and (j) shows the effect of obstructive artefacts such as
clumps of particle aggregate. Red lines show the position and radius of spheres identified by RG
and blue lines show the spheres identified by CHT.

3

Table S1. Performance of RG and CHT for each of the synthetically produced images. Three
criteria, precision, recall and difference in the radii of the droplets between the actual and
identified radii are given. The difference between the radii of the actual circles and detected
circles are given to the nearest pixel.

Figure S2 Some limitations of RG technique. (a) shows how square elements intersecting the
circles cause mis-identification where the circularity parameter is set too low. Incomplete
circles are identified at the cost of circle size accuracy. (b) shows intersecting spheres where the
intersection is interpreted as an ‘island’ if the circularity parameter is set too low. (c) shows the
use of watershedding (not used elsewhere in this study). Droplets are intersected by
watershedding lines, but additional structures (triangular shape) may be introduced where a
droplet should be.

Image
Precision (%) Recall (%) Radii Difference (Pixels)

CHT RG CHT RG CHT RG

(a) Monodisperse 100 100 100 100 -1 2

(b) Polydisperse 100 100 100 100 0 1

(c) Touching droplets 100 0 100 0 -1 N/A

(d) Slight overlap 100 0 100 0 0 N/A

(e) Severe overlap 100 0 100 0 0 N/A

(f) Overlap polydisperse 100 0 100 0 0 N/A

(g) Limited contrast 100 100 100 100 0 2

(h) Overlap limited contrast 100 0 100 0 0 N/A

(i) Focus 100 100 100 100 0 6

(j) Monodisperse artefacts 100 90 100 50 0 3

4

2 Emulsion composition

Table S1. Compositions of the different emulsions investigated in this study. Letters in the first
column correspond to images in Figure 3 (main manuscript). Image files of all samples are freely
available at: https://doi.org/10.17863/CAM.113063

Sample ID Solid Particle Oil
Particles mass

 (wt%)
Dye

1 Azo(CH2)3OH (0.6)- SiO2
a Diethyl adipate 1 none

2 Azo(CH2)3OH (1.4)- SiO2
 a Diethyl adipate 0.5 none

3 h) Cu (II) phthalocyanine Mineral oil 0.2 none

4 Cu (II) phthalocyanine Mineral oil 0.2 Nile red

5 i) Casein Soybean oil 1 none

6 a) SiO2 Mineral oil 2.5 none

7 Starch Mineral oil 0.5 none

8 Starch Mineral oil 0.75 none

9 Starch Mineral oil 1 none

10 c) Starch Silicone oil 0.5 none

11 Starch Silicone oil 1 none

12 Starch Silicone oil 1 none

13 d) Starch Silicone oil 2 none

14 AzoOH (1.0)- SiO2
a Diethyl adipate 1 none

15 AzoOH (1.5)- SiO2
a Diethyl adipate 5 none

16 Azo(CH2)11OH (0.4)-SiO2
a Diethyl adipate 0.5 none

17 Azo(CH2)11OH (0.4)- SiO2
a Diethyl adipate 1 none

18 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 5 none

19 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 5 none

20 Azo(CH2)11OH (1.7)- SiO2
a Diethyl adipate 5 none

21 Azo(CH2)11OH (1.7)- SiO2
a Diethyl adipate 5 none

22 Azo(CH2)11OH (0.4)- SiO2
a Diethyl adipate 2 none

23 e) Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 0.5 Nile red

24 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none

25 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none

26 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none

5

27 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none

28 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none

29 g) Azo(CH2)11OH (1.5)-SiO2
a Silicone oil 1 none

30 f) Azo(CH2)11OH (1.5)-SiO2
a Silicone oil 1 Nile red

31 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none

32 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none

33 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none

34 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 1 none

35 Azo(CH2)3OH (0.6)- SiO2
a Diethyl adipate 0.5 none

36 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 0.5 none

37 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 0.5 none

38 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none

39 Azo(CH2)3OH (1.4) -SiO2
a Diethyl adipate 5 none

40 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none

41 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none

42 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 5 none

43 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 1 none

44 b) Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.5 none

45 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.75 none

46 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 5 none

47 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 0.25 none

48 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 2 none

49 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.25 none

50 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.75 none

a Synthesis described in reference [1].

6

3 Software parameters

In this work, open-source software was developed in order to carry out the semi-automated detection of

droplets using the Circle Hough Transform. The software, called “Hough-scan”,2 combines tools found

in the OpenCV library3 with a graphical user interface (GUI) that makes it easier to select the appropriate

image analysis parameters (see Figure S3). The user selectable parameters provided by OpenCV are:

blur, minimum distance, canny upper limit, Hough-threshold, min. radius and max. radius. A discussion

of each of these parameters is given below below.

On its own, the CHT implementation in OpenCV is not suited to the detection of droplets in images where

there are many circular objects, due to the associated computational burden.4 This is because with more

droplets and image detail, there are more locations for the algorithm to scan across (see below). This

problem is also compounded when using high-resolution images, with many modern cameras shooting

at 4K resolution. The computational requirement can also increase exponentially when the initial guess

of the parameters is less accurate. To reduce this, the software breaks the image down into a series of

user-defined tiles which overlap. The user can set the tiles to contain, roughly 1-10 droplets. A set of trial

parameters can then be tested on a single tile, before processing the entire image. Multiprocessing as

part of the Python “multiprocessing” library is also used.5 This allows tiles to be processed concurrently,

decreasing the overall processing time. The above parameters can all be selected, and the output viewed

using a GUI, which was developed using the GTK3+ toolkit (see Figure S3).6 The overall experience is that

users can guess parameters for their sample, run the software (which processes on the order of

seconds), check the accuracy and then either update the parameters or export their results as a list of

droplet locations (x,y) and radii (in pixels, px). In this work, all images were analysed using a desktop

computer equipped with a Ryzen 5 3600 processor and 16 GB of RAM. The program and all of its

dependencies are open-source and available online.2

7

Figure S3: Example screenshot of the GUI for Hough-scan application, showing an optical microscopy
image of a Pickering emulsion. User definable parameters are shown on the right and bottom of screen.
A tile preview is in the top right corner and the process can be run by clicking the run button in lower right
corner.

In order to analyse an image effectively, it is important to understand the origin of the user selectable

paraments as part of the CHT provided by OpenCV.3 As such, a brief explanation is given below, using

Figure S4 for reference. The order of the applied operations is as follows: a) Blur; b) Sobel; c) Canny

Edge Detection; d) Circle Hough Transform. The user-definable parameters are: Blur, Canny Upper

Limit, Hough Threshold, Min Radius, Max Radius and Minimum Distance.

a) Blur

Blur is an example of a kernel convolution processes. For each pixel in the image (red square, Figure

S4a, the neighbouring pixels (green square) are added using a weighting which is determined by the

kernel (3 × 3 matrix - Greek letters in this case). The output is then often normalised. The Blur

parameter adjusts the number of pixels used in blurring, i.e., the size of the matrix. A typical example

is given below, where 𝐺𝑥,𝑦 is the kernel applied to an image:

𝐺!,# =
1
16
'
1				2				1
2				4				2
1				2				1

+

Eq. 1

8

Figure S4. Diagrams of the different stages involved in the Circle Hough Transform, showing the origin of
each of the parameters available in the OpenCV module. (a) Kernel convolution used for Blur and Sobel
operations. An operation (Greek letters) is applied to the central pixel (red square) using the surrounding
pixels (green square), as shown by the central pixel changing from light to dark grey. (b) (i) An example
Sobel operation applied to a black circle which is inset with a grey circle and is on a white background.
(ii) shows edge detection and (iii) shows the angular information. The coloured scale is in degrees, split
at 90° increments. (c) Example Canny Edge Detection for the circle in (b). The inner arc in (i) has a lower
intensity than the outer arc (white line vs. grey line). (ii) shows that only the pixels above the primary
threshold or above the secondary, but connected to the primary threshold, are retained. (d) Example
CHT applied to two overlapping circles of radius r1 and r2. The image is given at an instance where the
CHT is scanning at radius rx, where rx is equal to r1. (ii) is the accumulator image and shows that a bright
spot is formed after scanning each of the white pixels. The radius and centre of the circle can therefore
be calculated.

* = 𝑖 ∙ 𝛼 + ℎ ∙ 𝛽 + 𝑔 ∙ 𝛾 + 𝑓 ∙ 𝛿 + 𝑒∙𝜖		+ 𝑑 ∙ 𝜁 + 𝑐 ∙ 𝜂 + 𝑏 ∙ 𝜃 + 𝑎∙				=𝑒∗

0

90

180

270

360

Primary
threshold

Secondary
threshold

X (px)

In
te

ns
ity

 (a
.u

.)

i

r2

r1

i ii

i

ii

ii iii

iii

a)

b)

c)

d)

9

b) Sobel Operation

The Sobel operation is another example of a kernel convolution process which is used for edge

detection. It is applied in both the x and y direction independently and allows calculation of angular

information as shown in Figure S4b. This information is then used in the next process - Canny Edge

Detection. The kernel convolution matrix used for edge detection is given below:

Sobel: 𝐺! = '
−1 0 1
−2 0 2
−1 0 1

+ 𝐺# = '
−1 −2 1
0 0 0
1 2 1

+ 𝐺!,# = .𝐺!$ + 𝐺#$𝐺orientation = atan	 3
𝐺!
𝐺#
4

Eq. 2

c) Canny Edge Detection

Canny edge detection uses two thresholds (primary and secondary). A line is drawn in the direction of

the ‘edge’ (see Figure S4c). Values above the primary threshold are retained and values below are

removed. If, however, a value is below the primary threshold but above the secondary threshold and

is also connected to a point above the primary threshold by connecting pixels (i.e., without dipping

below the secondary threshold), the value is retained. The ‘Canny Upper’ parameter sets the primary

threshold and the secondary threshold is set by OpenCV as half of the value of the upper. This

operation helps to find the edges of the droplets, which is then used by the Circle Hough Transform.

d) Circle Hough Transform

At this stage the image has been refined to a set of thin white lines/circles on a black background. The

CHT will scan across the image until it finds a white pixel. For each pixel, a circle of radius r (where r

is an ever-increasing value upon each pass of the image and is set between two limits) is drawn using

the equation for a circle:

4 References

1. K. D. Richards and R. C. Evans, Soft Matter, 2022, 18, 5770–5781.

2. Hough-scan, https://github.com/KRichardsF/Hough-Scan, (accessed 28 May 2021).

3. OpenCV, https://opencv.org/, (accessed 29 September 2021).

4. S. Maaß, J. Rojahn, R. Hänsch and M. Kraume, Comput. Chem. Eng., 2012, 45, 27–37.

5. Multiprocessing, docs.python.org/3/library/multiprocessing.html, (accessed 28 August 2022).

6. GTK3+, https://www.gtk.org/, (accessed 28 September 2022).

