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1 Synthetic images 

 

Figure S1: Synthetic images (800 × 800 pixels) representing different Pickering emulsion 
characteristics. (a) – (f) differ in polydispersity, overlap and spatial configuration. (g) and (h) are 
referred to as “limited contrast emulsions” and represent examples where emulsions do not 
appear as dark, well defined lines. (i) shows simulation of a focal plane where droplets appear 
less defined toward edges of the image and (j) shows the effect of obstructive artefacts such as 
clumps of particle aggregate. Red lines show the position and radius of spheres identified by RG 
and blue lines show the spheres identified by CHT.   
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Table S1. Performance of RG and CHT for each of the synthetically produced images. Three 
criteria, precision, recall and difference in the radii of the droplets between the actual and 
identified radii are given. The difference between the radii of the actual circles and detected 
circles are given to the nearest pixel. 

Figure S2 Some limitations of RG technique. (a) shows how square elements intersecting the 
circles cause mis-identification where the circularity parameter is set too low. Incomplete 
circles are identified at the cost of circle size accuracy. (b) shows intersecting spheres where the 
intersection is interpreted as an ‘island’ if the circularity parameter is set too low. (c) shows the 
use of watershedding (not used elsewhere in this study). Droplets are intersected by 
watershedding lines, but additional structures (triangular shape) may be introduced where a 
droplet should be. 

  

Image 
Precision (%) Recall (%) Radii Difference (Pixels) 

CHT  RG  CHT  RG  CHT RG 

(a) Monodisperse 100 100 100 100 -1 2 

(b) Polydisperse 100 100 100 100 0 1 

(c) Touching droplets 100 0 100 0 -1 N/A 

(d) Slight overlap 100 0 100 0 0 N/A 

(e) Severe overlap 100 0 100 0 0 N/A 

(f) Overlap polydisperse 100 0 100 0 0 N/A 

(g) Limited contrast 100 100 100 100 0 2 

(h) Overlap limited contrast 100 0 100 0 0 N/A 

(i) Focus 100 100 100 100 0 6 

(j) Monodisperse artefacts 100 90 100 50 0 3 
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2 Emulsion composition 

Table S1. Compositions of the different emulsions investigated in this study. Letters in the first 
column correspond to images in Figure 3 (main manuscript). Image files of all samples are freely 
available at: https://doi.org/10.17863/CAM.113063 

Sample ID Solid Particle Oil 
Particles mass 

 (wt%) 
Dye 

1 Azo(CH2)3OH (0.6)- SiO2
a Diethyl adipate 1 none 

2 Azo(CH2)3OH (1.4)- SiO2
 a Diethyl adipate 0.5 none 

3 h) Cu (II) phthalocyanine Mineral oil 0.2 none 

4 Cu (II) phthalocyanine Mineral oil 0.2 Nile red 

5 i) Casein Soybean oil 1 none 

6 a) SiO2 Mineral oil 2.5 none 

7 Starch Mineral oil 0.5 none 

8 Starch Mineral oil 0.75 none 

9 Starch Mineral oil 1 none 

10 c) Starch Silicone oil 0.5 none 

11 Starch Silicone oil 1 none 

12 Starch Silicone oil 1 none 

13 d) Starch Silicone oil 2 none 

14 AzoOH (1.0)- SiO2
a Diethyl adipate 1 none 

15 AzoOH (1.5)- SiO2
a Diethyl adipate 5 none 

16 Azo(CH2)11OH (0.4)-SiO2
a Diethyl adipate 0.5 none 

17 Azo(CH2)11OH (0.4)- SiO2
a Diethyl adipate 1 none 

18 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 5 none 

19 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 5 none 

20 Azo(CH2)11OH (1.7)- SiO2
a Diethyl adipate 5 none 

21 Azo(CH2)11OH (1.7)- SiO2
a Diethyl adipate 5 none 

22 Azo(CH2)11OH (0.4)- SiO2
a Diethyl adipate 2 none 

23 e) Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 0.5 Nile red 

24 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none 

25 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none 

26 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none 
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27 Azo(CH2)11OH (1.5)- SiO2
a Diethyl adipate 1 none 

28 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none 

29 g) Azo(CH2)11OH (1.5)-SiO2
a Silicone oil 1 none 

30 f) Azo(CH2)11OH (1.5)-SiO2
a Silicone oil 1 Nile red 

31 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none 

32 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none 

33 Azo(CH2)11OH (1.5)-SiO2
a Diethyl adipate 1 none 

34 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 1 none 

35 Azo(CH2)3OH (0.6)- SiO2
a Diethyl adipate 0.5 none 

36 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 0.5 none 

37 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 0.5 none 

38 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none 

39 Azo(CH2)3OH (1.4) -SiO2
a Diethyl adipate 5 none 

40 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none 

41 Azo(CH2)3OH (1.4)-SiO2
a Diethyl adipate 5 none 

42 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 5 none 

43 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 1 none 

44 b) Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.5 none 

45 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.75 none 

46 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 5 none 

47 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 0.25 none 

48 Azo(CH2)3OH (0.6)-SiO2
a Diethyl adipate 2 none 

49 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.25 none 

50 Azo(CH2)3OH (1.7)-SiO2
a Diethyl adipate 0.75 none 

a Synthesis described in reference [1]. 
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3 Software parameters 

In this work, open-source software was developed in order to carry out the semi-automated detection of 

droplets using the Circle Hough Transform. The software, called “Hough-scan”,2 combines tools found 

in the OpenCV library3 with a graphical user interface (GUI) that makes it easier to select the appropriate 

image analysis parameters (see Figure S3). The user selectable parameters provided by OpenCV are: 

blur, minimum distance, canny upper limit, Hough-threshold, min. radius and max. radius. A discussion 

of each of these parameters is given below below.  

On its own, the CHT implementation in OpenCV is not suited to the detection of droplets in images where 

there are many circular objects, due to the associated computational burden.4 This is because with more 

droplets and image detail, there are more locations for the algorithm to scan across (see below). This 

problem is also compounded when using high-resolution images, with many modern cameras shooting 

at 4K resolution. The computational requirement can also increase exponentially when the initial guess 

of the parameters is less accurate. To reduce this, the software breaks the image down into a series of 

user-defined tiles which overlap. The user can set the tiles to contain, roughly 1-10 droplets. A set of trial 

parameters can then be tested on a single tile, before processing the entire image. Multiprocessing as 

part of the Python “multiprocessing” library is also used.5 This allows tiles to be processed concurrently, 

decreasing the overall processing time. The above parameters can all be selected, and the output viewed 

using a GUI, which was developed using the GTK3+ toolkit (see Figure S3).6 The overall experience is that 

users can guess parameters for their sample, run the software (which processes on the order of 

seconds), check the accuracy and then either update the parameters or export their results as a list of 

droplet locations (x,y) and radii (in pixels, px). In this work, all images were analysed using a desktop 

computer equipped with a Ryzen 5 3600 processor and 16 GB of RAM. The program and all of its 

dependencies are open-source and available online.2 
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Figure S3: Example screenshot of the GUI for Hough-scan application, showing an optical microscopy 
image of a Pickering emulsion. User definable parameters are shown on the right and bottom of screen. 
A tile preview is in the top right corner and the process can be run by clicking the run button in lower right 
corner. 

In order to analyse an image effectively, it is important to understand the origin of the user selectable 

paraments as part of the CHT provided by OpenCV.3 As such, a brief explanation is given below, using 

Figure S4 for reference. The order of the applied operations is as follows: a) Blur; b) Sobel; c) Canny 

Edge Detection; d) Circle Hough Transform. The user-definable parameters are: Blur, Canny Upper 

Limit, Hough Threshold, Min Radius, Max Radius and Minimum Distance. 

a) Blur 

Blur is an example of a kernel convolution processes. For each pixel in the image (red square, Figure 

S4a, the neighbouring pixels (green square) are added using a weighting which is determined by the 

kernel (3 × 3 matrix - Greek letters in this case). The output is then often normalised. The Blur 

parameter adjusts the number of pixels used in blurring, i.e., the size of the matrix. A typical example 

is given below, where 𝐺𝑥,𝑦 is the kernel applied to an image: 

𝐺!,# =
1
16
'
1				2				1
2				4				2
1				2				1

+ 

 

Eq. 1 
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Figure S4. Diagrams of the different stages involved in the Circle Hough Transform, showing the origin of 
each of the parameters available in the OpenCV module. (a) Kernel convolution used for Blur and Sobel 
operations. An operation (Greek letters) is applied to the central pixel (red square) using the surrounding 
pixels (green square), as shown by the central pixel changing from light to dark grey. (b) (i) An example 
Sobel operation applied to a black circle which is inset with a grey circle and is on a white background. 
(ii) shows edge detection and (iii) shows the angular information. The coloured scale is in degrees, split 
at 90° increments. (c) Example Canny Edge Detection for the circle in (b). The inner arc in (i) has a lower 
intensity than the outer arc (white line vs. grey line). (ii) shows that only the pixels above the primary 
threshold or above the secondary, but connected to the primary threshold, are retained. (d) Example 
CHT applied to two overlapping circles of radius r1 and r2. The image is given at an instance where the 
CHT is scanning at radius rx, where rx is equal to r1. (ii) is the accumulator image and shows that a bright 
spot is formed after scanning each of the white pixels. The radius and centre of the circle can therefore 
be calculated.  

* = 𝑖 ∙ 𝛼 + ℎ ∙ 𝛽 + 𝑔 ∙ 𝛾 + 𝑓 ∙ 𝛿 + 𝑒∙𝜖		+ 𝑑 ∙ 𝜁 + 𝑐 ∙ 𝜂 + 𝑏 ∙ 𝜃 + 𝑎∙				=𝑒∗
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b) Sobel Operation 

The Sobel operation is another example of a kernel convolution process which is used for edge 

detection. It is applied in both the x and y direction independently and allows calculation of angular 

information as shown in Figure S4b. This information is then used in the next process - Canny Edge 

Detection. The kernel convolution matrix used for edge detection is given below: 

Sobel: 𝐺! = '
−1 0 1
−2 0 2
−1 0 1

+ 𝐺# = '
−1 −2 1
0 0 0
1 2 1

+ 𝐺!,# = .𝐺!$ + 𝐺#$𝐺orientation = atan	 3
𝐺!
𝐺#
4 

 

Eq. 2 

c) Canny Edge Detection 

Canny edge detection uses two thresholds (primary and secondary). A line is drawn in the direction of 

the ‘edge’ (see Figure S4c). Values above the primary threshold are retained and values below are 

removed. If, however, a value is below the primary threshold but above the secondary threshold and 

is also connected to a point above the primary threshold by connecting pixels (i.e., without dipping 

below the secondary threshold), the value is retained. The ‘Canny Upper’ parameter sets the primary 

threshold and the secondary threshold is set by OpenCV as half of the value of the upper. This 

operation helps to find the edges of the droplets, which is then used by the Circle Hough Transform. 

d) Circle Hough Transform 

At this stage the image has been refined to a set of thin white lines/circles on a black background. The 

CHT will scan across the image until it finds a white pixel. For each pixel, a circle of radius r (where r 

is an ever-increasing value upon each pass of the image and is set between two limits) is drawn using 

the equation for a circle: 
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