Supplementary Information for "Effects of Ligand vs. Linker on Phase Behavior and Mechanical Properties of Nanoparticle Gels"

Qizan Chen,¹ Dinesh Sundaravadivelu Devarajan,¹ Arash Nikoubashman,^{2,3} Michael P. Howard,^{4, a)} and Jeetain Mittal^{1,5,6, b)}

¹⁾Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, United States

²⁾Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6,

01069 Dresden, Germany

³⁾Institut für Theoretische Physik, Technische Universität Dresden, 01069 Dresden, Germany

⁴⁾Department of Chemical Engineering, Auburn University, Auburn, Alabama 36849, United States

⁵⁾Department of Chemistry, Texas A&M University, College Station, TX 77843, United States

⁶⁾Interdisciplinary Graduate Program in Genetics and Genomics,

Texas A&M University, College Station, TX 77843, United States

 $^{^{\}rm a)} {\it Electronic}$ mail: mphoward@auburn.edu

^{b)}Electronic mail: jeetain@tamu.edu

I. SUPPLEMENTARY FIGURES

FIG. S1. Mean squared displacement of (a) ligand-, (b) Linker I-, and (c) Linker II-mediated nanoparticles with purely repulsive interactions. Colors indicate different volume fractions η , and line styles represent polymer bending stiffness: solid (flexible), dashed (semiflexible), and dotted (rigid).Simulations were run for $5 \times 10^5 \tau$, starting from the initial dispersed state prior to annealing, with nanoparticle centers saved every 10τ

FIG. S2. Mean squared displacement of polymer monomers in (a) Linker I- and (b) Linker IImediated nanoparticles with purely repulsive interactions. Colors indicate different volume fractions η , and line styles represent polymer bending stiffness: solid (flexible), dashed (semiflexible), and dotted (rigid). The simulations and analysis protocols are identical to those described for Fig. S1; except that polymer monomer positions were saved every $10^3\tau$ to reduce storage demands.

FIG. S3. Radial distribution function between attractive beads of flexible ligands on different nanoparticles as a function of ligand–ligand attraction strength ε_1 .

FIG. S4. Nanoparticle partial static structure factor extrapolated to zero wavevector, S(0), and percolation line as a function of volume fraction η and ligand–ligand attraction strength ε_1 for different ligand bending stiffnesses k_s .

FIG. S5. (a) Engineering stress $\sigma_{\rm E}$ as a function of strain λ for semiflexible ligands under two extension rates $0.00025\tau^{-1}$ (dashed lines) and $0.0005\tau^{-1}$ (solid lines). (b) Comparison of mechanical properties $\lambda^{\rm UTE}$, $\sigma^{\rm UTS}$, and G for $\varepsilon_{\rm l} = 5$ at the two extension rates. Error bars represent the standard error of the mean across independent simulations and extension directions.

FIG. S6. Engineering stress $\sigma_{\rm E}$ for ligand-mediated nanoparticle assemblies under uniaxial tensile deformation (extension factor λ) in three different stretching directions and three independent simulations for flexible, semiflexible, and rigid ligands.

FIG. S7. Engineering stress $\sigma_{\rm E}$ for ligand-mediated nanoparticle assemblies under uniaxial tensile deformation (extension factor λ) for different ligand bending stiffnesses $k_{\rm s}$. Error bars represent the standard error of the mean across independent simulations and extension directions.

FIG. S8. Engineering stress $\sigma_{\rm E}$ of Linker I- (dashed lines) and Linker II- (dotted lines) mediated nanoparticle assemblies to uniaxial tensile deformation (extension factor λ) at a fixed linker–linker attraction strength $\varepsilon_{\rm l} = 5$ and two different linker–nanoparticle attraction strengths $\varepsilon_{\rm c}$ for different linker bending stiffnesses $k_{\rm s}$. The solid lines show the same measurements for the ligand-mediated nanoparticle assemblies with ligand–ligand attraction strength $\varepsilon_{\rm l} = 5$. Error bars represent the standard error of the mean across independent simulations and extension directions.

FIG. S9. (a) Percentage of free linkers as a function of polymer bending stiffness k_s for Linker I-(blue) and Linker II- (green) mediated nanoparticle assemblies with $\eta = 0.13$, $\varepsilon_1 = 5$, and varied $\varepsilon_c = 5$ or 10. Error bars represent the standard error of the mean across the final assemblies from annealing. (b) Corresponding violin plot of linker coordination number per nanoparticle at $\varepsilon_c = 10$.

FIG. S10. (a) Percentage of free linker-attaching beads and (b) averaged linker-attaching coordination number as a function of polymer bending stiffness k_s for ligand- (red) and Linker I- (blue) mediated nanoparticle assemblies with $\eta = 0.13$, $\varepsilon_1 = 5$ and $\varepsilon_c = 10$. Error bars represent the standard error of the mean across the final assemblies from annealing.

FIG. S11. Engineering stress $\sigma_{\rm E}$ as a function of the extension factor λ in the x, y, and z directions for ligand- (solid Line), Linker I- (dashed Line), and Linker II- (dotted Line) mediated nanoparticle assemblies using flexible, semiflexible, and rigid polymers. Results are shown for three independent simulations.

FIG. S12. Nanoparticle–nanoparticle radial distribution function parallel $g_{||}$ and perpendicular g_{\perp} to the direction of deformation for (a) flexible, (b) semiflexible, and (c) rigid ligand, Linker I and Linker II polymers. The black and red lines correspond to systems before ($\lambda = 0$) and after deforming to $\lambda = \lambda^{\text{UTE}}$, respectively. The calculation was done following the methodology described in Ref. 7.

FIG. S13. Coordination number of beads as a function of the extension factor λ for flexible, semiflexible and rigid Linker I-mediated nanoparticle assemblies with $\varepsilon_1 = 5$ and $\varepsilon_c = 10$. (a) Coordination number between linker-attaching beads. (b) Coordination number between surface and nanoparticle-attaching beads. Error bars represent the standard error of the mean across independent simulations and extension directions.

FIG. S14. Nanoparticle partial static structure factor S(q) for different bending stiffnesses k_s : (a) ligand-mediated nanoparticle assemblies with ligand-ligand attraction strength $\varepsilon_1 = 5$, (b) Linker I-mediated nanoparticle assemblies with linker-linker attraction strength $\varepsilon_1 = 5$ and linkernanoparticle attraction strength $\varepsilon_c = 10$, and (c) Linker II-mediated nanoparticle assemblies with linker-nanoparticle attraction strength $\varepsilon_c = 10$. The data lines are additionally offset by 2 in order from smallest to largest k_s to better compare the differences.

FIG. S15. Simulation snapshots of Linker II-mediated nanoparticle assemblies with a fixed linkernanoparticle attraction strength $\varepsilon_{\rm c} = 10$ for all bending stiffnesses $k_{\rm s}$ investigated.

FIG. S16. Simulation snapshots of Linker II-mediated nanoparticle assemblies with fixed bending stiffness $k_{\rm s} = 50$ as a function of linker–nanoparticle attraction strength $\varepsilon_{\rm c}$.

II. SUPPLEMENTARY MOVIES

- Movie S1. Uniaxial tensile deformation of flexible ligand-mediated nanoparticle assembly for ligand-ligand attraction strength $\varepsilon_1 = 5$.
- Movie S2. Uniaxial tensile deformation of semiflexible ligand-mediated nanoparticle assembly for ligand-ligand attraction strength $\varepsilon_1 = 5$.
- Movie S3. Uniaxial tensile deformation of rigid ligand-mediated nanoparticle assembly for ligand-ligand attraction strength $\varepsilon_1 = 5$.
- Movie S4. Uniaxial tensile deformation of flexible Linker I-mediated nanoparticle assembly for linker–linker attraction strength $\varepsilon_1 = 5$ and linker–nanoparticle attraction strength $\varepsilon_c = 10$.
- Movie S5. Uniaxial tensile deformation of semiflexible Linker I-mediated nanoparticle assembly for linker–linker attraction strength $\varepsilon_1 = 5$ and linker–nanoparticle attraction strength $\varepsilon_c = 10$.
- Movie S6. Uniaxial tensile deformation of rigid Linker I-mediated nanoparticle assembly for linker–linker attraction strength $\varepsilon_1 = 5$ and linker–nanoparticle attraction strength $\varepsilon_c = 10$.
- Movie S7. Uniaxial tensile deformation of flexible Linker II-mediated nanoparticle assembly for linker–nanoparticle attraction strength $\varepsilon_{\rm c} = 10$.
- Movie S8. Uniaxial tensile simulation of semiflexible Linker II-mediated nanoparticle assembly for linker–nanoparticle attraction strength $\varepsilon_{\rm c} = 10$.
- Movie S9. Uniaxial tensile deformation of rigid Linker II-mediated nanoparticle assembly for linker–nanoparticle attraction strength $\varepsilon_{\rm c} = 10$.