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S1. LIST OF PARAMETERS

Parameters Symbol Value
Particle number N 314
Bond length b 1.0

Flagellum length L 314.0
Mass m 1.0

Beat period τ0 104

Time step dt/τ0 5× 10−8

Friction anisotropy ξ⊥0/ξ∥0 1.81
Perpendicular friction coeff. ξ⊥0 0.1

Parallel friction coeff. ξ∥0 0.05525
Spring constant kb2 2× 105

Bending rigidity κ0/L 63.69
Curvature amplitude Ac 0.02

TABLE S1: Table of key simulation parameters, their
descriptions, and respective values used in the model.

S2. VALIDATING FLAGELLAR DYNAMICS:
SIMULATIONS VERSUS THEORY

We compare our simulation results with earlier analyt-
ical predictions of Gray and Hancock [1]. In the limit of
small beat amplitude Ab, the expression for the swim-
ming velocity is [1]

vflag = −1

2

(
ξ⊥
ξ∥

− 1

)
A2

bωq (S1)

for the beat pattern y(x, t) = Ab sin(qx − ωt) with beat
frequency ω and wave number q = 2π/λ. In addition, the
curvature and beat amplitudes, Ac and Ab, respectively
are related by Ab = λ2Ac/4π

2.
The comparison of the analytical expression for the

beat amplitude Ab as a function of curvature amplitude
Ac with the simulation results in Fig. S1(a) shows excel-
lent agreement for small curvature amplitudes Ab/L ≲
0.1. Also, the simulated swimming velocity agrees well
with the analytical expression (S1) for smaller amplitudes

∗ s.anand@fz-juelich.de
† j.elgeti@fz-juelich.de
‡ g.gompper@fz-juelich.de

Ab/L ≲ 0.05, see Fig. S1(b). Deviations for larger beat
amplitudes are due to higher-order effects neglected in
the analytic model. Thus, our simulation results agree
well with established theoretical predictions, validating
our model’s accuracy in studying flagellum dynamics.
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FIG. S1: Quantitative comparison of simulation
results with analytical expressions (a) Beat

amplitude Ab as a function of curvature amplitude Ac,
with analytical expression (dashed lines) and simulation
results (dotted lines). (b) Propulsion velocity of beating
flagellum vflag as a function of beating amplitude Ab.

.

Supplementary Information (SI) for Soft Matter.
This journal is © The Royal Society of Chemistry 2025



2

S3. ANALYTICAL CALCULATION OF
VISCOTACTIC BEHAVIOR

We perform the calculation of the torque induced by a
viscosity gradient in a body-fixed reference frame (x′, y′),
where the x′-axis is along the symmetry axis of the flagel-
lum. We assume a flagellar beat with a simple sinusoidal
travelling bending wave,

y′(x′, t) = Ab sin(qx
′ − ωt) (S2)

This implies a mass distribution

ρ(x′, y′, t) = δ(y′ −Ab sin(qx
′ − ωt)) (S3)

from which we obtain for a time-averaged beat the pro-
jected mass density ρ̄(y′) on the y′-axis,

ρ̄(y′) =
1

τ

∫ τ

0

∫ L

0

dt dx′ δ (y′ −Ab sin(qx
′ − ωt)) (S4)

The integrations in Eq. (S4) can be performed by using
the property of the Dirac’s δ function that

δ(g(t)) =
∑
i

1

|g′(t0,i)|
δ(t− t0,i) (S5)

where t0,i are the roots of the function g(t), i.e. g(t0,i) =
0. Thus, we have to determine the times t0 where y′ =
Ab sin(qx

′ − ωt0). For y
′ within the range [−Ab, Ab] and

t in [0, τ ] for one wavelength, the above equation has two
solutions,

ωt0,1 = qx′ − sin−1 (y′/Ab) (S6)

ωt0,2 = qx′ − π + sin−1 (y′/Ab) (S7)

Using the property of the Dirac’s δ function given in
Eq. (S5), we first integrate over t,∫ τ

0

dt δ(y′ −Ab sin(qx
′ − ωt)) =

∑
i

1

|ωAb cos(qx′ − ωt0,i)|
(S8)

Hence,∑
i

1

|ωAb cos(qx′ − ωt0,i)|
=

2

ωAb

√
1− (y′/Ab)

2
(S9)

The remaining integration over x′ finally yields

1

τ

∫ L

0

dx′ 2

ωAb

√
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2
=

L

π
√

A2
b − y′2

(S10)

so that

ρ̄(y′) =
L

π
√
A2

b − y′2
. (S11)

As a consistency check, we verify that the total mass of
the flagellum is∫

ρ̄(y′) dy′ =

∫ Ab

−Ab

dy′
L

π
√
A2

b − y′2
= L . (S12)

The rotational torque TA required for reorientation of
a flagellum then is

TA =

∫ Ab

−Ab

dy′ y′ρ̄(y′) vξ∥
α

L
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π
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2
b cos(θ) , (S13)

where in the body-fixed reference frame, the gradient di-
rection appears with an angle θ relative to the x′-axis.
The active torque TA is balanced by the torque TR due

to frictional drag, which for a stiff rod (approximation of
very small beat amplitude Ab) around its midpoint is

TR = ΩξR ≃ Ωξ⊥L
3/12 . (S14)

The resulting angular velocity Ω is then

Ω = 6v
ξ∥

ξ⊥

(
Ab

L

)2

P×∇
(

η

η0

)
. (S15)

Furthermore, Eq. (S15) can be simply re-written as
Ω(θ, α) = Ω1α cos(θ), where Ω1 is the key viscotactic
response coefficient. For θ ≈ 0, this becomes Ω(α) =
Ω1α, in good agreement with the simulation results, see
Fig. S2(a,b).
To validate our analytical result for Ω, we compared

Eq. (S15) with the simulation data in Fig. S3. Both scale
with the same power of beat amplitude, Ω1τ ∼ (Ab/L)

4,
as velocity depends quadratically on Ab.

S4. ANALYTICAL CALCULATION OF
SWIMMING TRAJECTORY FOR

TROCHOID-LIKE MOTION

The orientational motion of an asymmetric flagellum
is obtained from the contribution of average spontaneous

curvature C0 and viscosity gradients ∇
(

η
η0

)
. As derived

in the main text, this motion is described by

θ̇ = Ω0 +Ω1α cos(θ) (S16)

From the indefinite integral of Eq. (S16) with initial con-
dition θinit = 0 at t = 0, we derived the explicit depen-
dence t(θ) as

t(θ) =
2 tan−1

(√
a−b√
a+b

tan( θ2 )
)
+ 2π⌊ θ

2π + 1
2⌋√

a2 − b2
(S17)
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FIG. S2: Quantifying visotactic behavior. (a) Averaged orientation of flagellum per beat ⟨θ⟩ (in radians) for
different viscosity gradients α as a function of time. (b) Effect of different viscosity gradients on rotational velocity
Ω. Data points are obtained from linear fits in (a). The dashed line is linear fit to Ω(α) = Ω1α, yielding Ω1. In

(a-b), the initial orientation is chosen to be θ ≈ 0. The single fit parameter Ω1τ = 0.02196 is the viscotactic response
coefficient.
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FIG. S3: Rotational velocity dependence on beat
amplitude. Rotational velocity Ω1 of the flagellum as

a function of beating amplitude for α = 0.4. A fit
(dashed red lined) of the simulation data (red dot

symbols) to the functional dependence Ω1τ ∼ (Ab/L)
4

(see text) and the analytical predictions (blue solid line)
of Eq. (S15) are shown to agree very well.

where, a = Ω0, b = Ω1α and ⌊ ... ⌋ is the floor func-
tion. The resulting trochoid-like trajectory is shown in
Fig. 10(b) of the main text.

From Eq. (S17), we can easily obtain the time period
∆T of a full cycle by taking the difference of time for θ
= 0 and θ = 2π, which implies

∆T =
2π√

(Ω0)2 − (Ω1α)2)
(S18)

S5. PROJECTED LENGTH OF FLAGELLUM AS
A FUNCTION OF BEATING AMPLITUDE

In order to investigate to which extent the projected
length for flagellum Leff (end-to-end distance) is geo-
metrically affected by the beat amplitude Ab, we derive
an expression for Leff for small beat amplitudes. The
total contour length of the flagellum is fixed and is al-
ways given by L. Furthermore, we consider a sinusoidal
flagellum at time t = 0 with beat shape y(x) (orientation
parallel to x-axis). Differential geometry implies

L =

∫ Leff

0

dx
√

1 + (∂xy)2 (S19)

For small beat amplitudes, the square root can be ex-
panded to first order, so that

L = Leff +
1

2

∫ Leff

0

dx (∂xy)
2 (S20)

For a flagellum with a single wave length, the projected
length of the flagellum is thus reduced from the full length
with increasing beat amplitude changes as

∆L = L− Leff = π2(Ab/L)
2 (S21)

Moreover, the projected length of the flagellum has an
influence on the rotational friction coefficient which is
given by ξR,F ∼ L3

eff , analogous to a stiff rod where

ξR,rod ∼ L3. Consequently, as increasing flexibility (Sp4)
leads to decrease of the beat amplitude, it implies an
increase of the projected length, and thus of ξR,F , see
Fig. S4.



4

102 103

Sp4

0.548

0.564

0.580

0.596

0.612

R,
F/

R,
ro

d

FIG. S4: Rotational friction coefficient vs. Sp4.
Variation of the ratio of rotation friction coefficients,
ξR,F /ξR,rod, as a function of sperm number Sp4. The

coefficient increases with increasing Sp4.

S6. MOVIE CAPTIONS

• Movie M1 Reorientation of a symmetrically beat-
ing flagellum toward regions of higher viscosity,
which demonstrates positive viscotaxis for C0L =
0.0, τ/τ0 = 0.2, α = 0.4 and θinit ≈ 0.0.

• Movie M2 Linear motion of an asymmetric flagel-
lum with small intrinsic curvature moving in a vis-
cosity gradients with C0L = −0.0157, τ/τ0 = 0.2,
α = 0.4 and θint ≈ 0.0.

• Movie M3 Trochoid-like motion perpendicular to
the viscosity gradient of an asymmetric flagellum
awith large intrinsic curvature, for C0L = −0.0628,
τ/τ0 = 0.2, α = 0.4 and θint ≈ 0.0.
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