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S1. Displacements
In Fig. S1 we choose a fixed value tw = 105 of the waiting time and
consider systems with κ = 50. This way characteristic jumps in the
MSD corresponding to large-scale re-organizations of the network
or breakage of fibers are well visible. Such jumps are smoothed
out when averaging over realizations and/or time origins as in
Fig. S1 and 15(c), respectively.

The three movies B-D (Tab. S-I) with δ t ∈ {1,5,50}×5000 show
400 equidistantly spaced frames for the curve of realization no. 1
in Fig. S1, that extends over a time period of t = 106. Each movie
uses its own coloring scheme which highlights bead displacement
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Fig. S1 Unaveraged MSD. (a,c) ∆(t, tw) = ⟨[r(t+tw)−r(tw)]2⟩ versus time
t for all 10 independent realizations of the Nc = 1000, κ = 50 systems at
a late stage of the coarsening tw = 105. For realization no. 1 (uppermost
curve) we provide supplementary movies A-D.

(a) (b) (c) (d)

Fig. S2 Ultra-slow coarsening. Snapshots for the system with Nc = 1000
chains for κ = 10 at four different waiting times (a) tw = 0, (b) tw = 1940,
(c) tw = 5×104, and (d) tw = 2.1×106. Note the marginal change between
(c) and (d), where the network coarsens ultra-slowly.
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(α) (β) (γ) (δ)

Fig. S3 Morphometric analysis. (a-d) Polymer surfaces and (α-δ)
skeletons (purple lines) for the κ = 10 systems at the waiting times for
which snapshots are shown in Fig. S2. In (α-δ) the polymer beads (semi-
transparent) instead of the polymer surfaces have been rendered. Images
were created with Ovito 3.10.6.

magnitudes between t and t + δ t. The histogram of bead dis-
placements is shown as well. This displacement histogram is
proportional to 4πr2Hs(r,δ t) with the self-part of the van Hove
correlation function Hs(r,δ t) = ⟨δ (r − |∆r(δ t)|)⟩ and ∆r(δ t) the
displacement of a given bead over a time interval δ t. Nor-
mal diffusion corresponds to a Gaussian van Hove function with
linearly increasing width, Hs(r,δ t)→ (4πDδ t)−3/2 exp(−r2/4Dδ t)
with D an assumed time-independent bead diffusion coefficient.
For the network-forming systems investigated here, strong devi-
ations from normal diffusion are reflected by i) a slower-than-
linear growth of the spread of Hs with δ t, ii) the slower-than
square root growth of the mean displacement with δ t, as well
as iii) the large values of the non-Gaussian parameter α2 seen in
Fig. 15(d). The movies furthermore demonstrate that rare events
of filament breakage and reorganization are associated with sig-
nificant distortions of the displacement histograms. For example,
pronounced jumps in ⟨∆r2⟩(t) and ⟨∆r4⟩(t) at about t = 350000 and
t = 995000 are caused by filament breakage and/or significant re-
arrangement of one or more filaments. Varying δ t allows us to
visualize and quantify displacements over different time scales.
Since the self-parts of the van Hove and intermediate scattering
functions are related to each other via Fourier transformation, the
movies visualize relaxation processes contributing to Fs(q,δ t).

S2. Aging and ultra-slow coarsening
As detailed in the main text, the systems studied here show ultra-
slow coarsening behavior, which leads to a waiting time depen-
dence of various structural as well as thermodynamic quantities.

Snapshots, polymer surfaces and skeletons for the systems with
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Fig. S4 Skeleton analysis. Time series averaged over 10 independent
realizations. Number of edges E, number of loops L◦, number of f -
functional skeleton beads n f for f ∈ {1,2,3,4} as defined in Sec. 5.4.2. In
the last row: the mean functionality f of skeleton beads, and the mean
junction functionality f J .

κ = 10 at four different waiting times are displayed in Figs. S2 and
S3. For all systems studied, time series for quantities character-
izing the skeleton (skeleton bead functionalities n f , number of
edges and loops) are provided in Figure S4. Time series for sur-
face area A f , volume V f of the filamentous network, Ṽ f obtained
from voronoi volumes of skeleton beads, corresponding number
densities ρ f and ρ̃ f , mean weighted ℓ0, ℓ1, and unweighted chord
lengths l0, l1 for the void and polymeric phases, obtained as de-
scribed in section 5.4.6, are shown in Figs. S5–S6. Most of these
quantities do not reach a stationary regime, and exhibit near-
logarithmic growth, captured by Eq. (22).

Figure S7 shows the decrease of the total as well as the pair
and bending energy per bead. As the system coarsens, potential
energy contributions decrease, similar to aging amorphous mate-
rials. We show in Fig. S7 also network-specific quantities like the
mean pore size, number of reversible bonds and polymer-specific
quantities like gyration radius and persistence length. These fig-
ures further support our conclusions that pore sizes increase dur-
ing coarsening, with chains straightening.
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Fig. S5 Morphometric analysis. Total polymer surface area A f and
volume Vf of the filamentous network, number density ρ f = Nb/Vf , and
Vf /V versus waiting time tw. While Vf and ρ f were obtained from the
accessible bead volume, ρ̃ f and Ṽf = Nb/ρ̃ f were calculated from the
Voronoi volumes of skeleton beads (deep inside the filamentous bundles).
Quantities were obtained using the methods described in Sec. 5.4.6.
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Fig. S6 Mean chord lengths. Time series, averaged over 10 independent
realizations. Mean unweighted chord lengths l0 and l1, mean weighted
chord lengths ℓ0 and ℓ1 versus waiting time tw. Quantities were obtained
using the methods described in Sec. 5.4.6. The lines in the l1 panel are
logarithmic fits (section Sec. S8).
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Fig. S7 Energies, pore size, and gyration radius. Time series, aver-
aged over 10 independent realizations. Total energy per bead etotal, pair
contribution to total energy per bead epair, bending energy per bead ea,
mean pore radius rpore, gyration radius Rg, number of reversible bonds
per bead, reduced persistence length ℓp/κ obtained from ea, and Lp/κ

obtained from Rg.
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Fig. S8 Orientational end-to-end vector dynamics. Correlation func-
tions Cee(t) (lines) and Fs(qee, t) (circles, for comparison) versus t for tw = 0
(open circles, dashed lines) and tw = 105 (filled circles, solid lines). For
κ = 0, 10, 50, and 75 the wave numbers are qee = 2π/R = 1.12 (1.0), 0.32
(0.29), 0.26 (0.25), and 0.25 (0.24), respectively (numbers in brackets
for tw = 105), where R is the square root of the measured mean squared
end-to-end distance at tw.

S3. Orientational relaxation of chains
Figure S8 shows the auto-correlation function Cee(t) = ⟨u(t + tw) ·
u(tw)⟩ of the normalized end-to-end vector u = (rN −r1)/|rN −r1|,
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Fig. S9 Self-similar pore size distribution. (a) Cumulative pore size dis-
tribution T-Pcum

pore (r) for comparison with the cumulative G-Pcum
pore (r) shown

in Fig. 9. For each κ we show data at tw = 5×104 (dashed) and tw = 105

(solid). (b) Same data as shown in (a) but versus r/rT−PSD
pore , where rT−PSD

pore
is the time-dependent mean T-PSD pore radius. Solid and dashed curves
fall onto two master curves at all times, onto the black solid line for all
filamentous networks (κ ≥ 10), and onto the light gray curve for the
droplet phase (κ < 10). Panel (b) remains unchanged if we include data
at larger tw.

averaged over all Nc chains and 10 independent realizations of
the system. Two different waiting times are considered, tw = 0 and
tw = 105. In the network-forming regime for semiflexible chains
with κ ≥ 10, relaxation of the end-to-end vector barely proceeds
on the time scales of the simulations (see Fig. S8) but we still ob-
serve the relaxation times to increase with increasing tw. For the
percolated networks, loss of orientational memory can only be
achieved for dangling ends (including ruptured filaments). Only
in the droplet phase with rather flexible chains does the correla-
tion function Cee(t) decay to zero, i.e. achieves full relaxation, as
the individual droplets can rotate freely. These observations are
in qualitative agreement with those made for the self part of the
intermediate scattering function Fs(q, t) (Fig. 17).

In analogy to the self-intermediate scattering function Fs(q, t),
the end-to-end vector relaxation can be characterized in terms of
an effective relaxation time τee defined by Cee(τee) = 0.5. To com-
pare τee to τ̃q derived in this way from Fs(q, t) (see Fig. 19), we
estimate a corresponding scattering vector qee from random walk
statistics, R ≈ ⟨R2⟩1/2

RW with ⟨R2⟩RW = b2(N−1) via qee = 2π/R. For
κ = 0 one therefore has qee ≈ 1.2 so that Rκ=0 ≈ 5.3. More ac-
curate values of R are available from Rg and Lp. From Fig. 17,
we can read off a characteristic relaxation time Fs(1, τ̃κ=0

q=1 ) = 0.5
of τ̃κ=0

q=1 ≈ 20 and 40 for tw = 0 and 105, respectively, while the
corresponding τee for κ = 0 is about a factor of five larger. Com-
paring in the same way τ̃qee and τee for other values of κ, one
needs to take into account that R increases and therefore qee de-
creases with increasing κ. Figure S8 shows a comparison of Cee(t)
and Fs(qee, t) where the corresponding wave numbers qee are cal-
culated from the simulation data of the end-to-end distances at
the given values of κ. Their values are given in the figure cap-
tion. From Fig. S8 we find that orientational relaxation proceeds
significantly slower compared to structural relaxation on the same
length scale. Therefore, we conclude that structural relaxation on
the length scale of the end-to-end vector is governed by cooper-
ative rearrangements, while single chain orientational relaxation
play a minor role, especially for the percolated systems.
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Fig. S10 Chain dimensions. Square root of the mean squared end-to-
end distance (red circles) and radius of gyration (black squares), at two
different times (the symbols overlap). Their ratio, varying between

√
6

(random coils) and
√

12 (rods) is used to estimate the "global" persis-
tence length (Sec. 5.2).
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Fig. S11 Power-Mittag-Leffler parameters. (a) Characteristic time τ ′q
of the power-ML function (6) versus the wave number q extracted from
the incoherent scattering function, for several κ (legend). Panel (b)
shows the data of Fig. 18 in a double-logarithmic representation. Open
circles correspond to tw = 0 (all κ), while filled circles are for tw = 105

(κ ∈ {10,50,75} only).

S4. Torquato’s pore size distribution (T-PSD)

The cumulative pore size distribution T-Pcum
pore (r) for comparison

with the cumulative G-Pcum
pore (r) (Fig. 9) is shown in Fig. S9(a). As

one may expect from the existence of a master curve for the dis-
tribution of weighted chord lengths for the filamentous networks,
the T-Ppore(r) falls onto a master curve as well, shown by the solid
black line in Fig. S9(b), where we plot T-Pcum

pore (r) versus r/rT-PSD
pore .

The droplet systems with κ < 10 give rise to a second, slightly
different master curve (light gray).
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Fig. S12 Stretched exponential parameters. (a) Exponent β and (b)
relaxation time τq characterizing the stretched exponential behavior at
very short times, t < 1. Open circles correspond to tw = 0 (all κ), while
filled circles are for tw = 105 (κ ∈ {10,50,75} only). Legend in (a) valid
for (b) as well.
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Fig. S13 Incoherent scattering function. Measured self part of the
intermediate scattering function Fs(q, t) versus t, averaged over 10 inde-
pendent realizations, for (a) κ = 10 at tw = 0, (b) κ = 10 at tw = 105, (c)
κ = 50 at tw = 0, (d) κ = 50 at tw = 105, (e) κ = 75 at tw = 0, and (f)
κ = 75 at tw = 105. The value of q is specified by the logarithmic color
bar.

S5. Incoherent scattering function
To fit the measured data for Fs(q, t) we used the three-parametric
F̃s(q, t) defined in Eq. (6). The two exponents α and β are shown
in semilogarithmic Fig. (18). The remaining fitting parameter τ ′q
is displayed in Fig. S11(a). As mentioned in Sec. 5.3 already, at
large t ≫ τ ′q, the F̃s(q, t) approaches a power-law regime, F̃s(q, t) =
(t/τ ′′q )

−α with τ ′′q /τ ′q = [1/Γ(1− β )]1/β . Figure S11(b) shows α

in a double-logarithmic plot, highlighting a regime α ∼ q6/5 at
low q. The three-parametric fit function has the feature, that it
does not guarantee the measured short and long time asymptotic
behaviors (both characterized by two variables) to be reproduced
perfectly. Such a constraint would require an additional fitting
parameter. The β values obtained from a fit of the short time
t < 1 behavior of Fs(q, t) to a stretched exponential are shown in
Fig. S12. Except for droplet phases with κ ≤ 2, the so-obtained β ’s
do not exceed unity and as expected, these β values do not fully
agree with the fitting parameter β of the power-ML (Fig. S11-b).
They approach constant values in the limit q → 0. We verified
that the fits of Fs(q, t) do not improve significantly upon adding a
fourth parameter γ in expressions such as {Eγ [−(t/τ ′q)

β ]α/β }.

S6. Additional snapshots
Additional snapshots at waiting time tw = 105 for selected realiza-
tions of systems with Nc = 1000 chains at κ = 5 and κ = 10 are
shown in Fig. S14. We find that both systems can exhibit two
qualitatively different types of structures. For κ = 5, the num-
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Movie κ realization tw duration filename content
A 50 1 1.28×106 1.5×105 kappa=50-tw=1e5-copy=1-rupture.gif filament rupture event
B 50 1 105 2×106 kappa=50-tw=1e5-copy=1-dframes=1.mp4 displacements, δ t = 5×103

C 50 1 105 2×106 kappa=50-tw=1e5-copy=1-dframes=5.mp4 displacements, δ t = 2.5×104

D 50 1 105 2×106 kappa=50-tw=1e5-copy=1-dframes=50.mp4 displacements, δ t = 2.5×105

E 5 11 −103 2×103 kappa=5-init-chain-color-openr.mp4 droplet formation
F 10 11 −103 2×103 kappa=10-init-chain-color-openr.mp4 network formation
G 50 11 −103 2×103 kappa=50-init-chain-color-openr.mp4 network formation
E+ 5 11 103 2×104 kappa=5-tw=1e3-chain-color.mp4 coarsening dynamics
F+ 10 11 103 2×104 kappa=10-tw=1e3-chain-color.mp4 coarsening dynamics
G+ 50 11 103 2×104 kappa=50-tw=1e3-chain-color.mp4 coarsening dynamics
H 5 1 0 105 kappa=5-tw=0-copy=1-chain-color-B.mp4 droplets and short cylinders
I 5 6 0 5×104 kappa=5-tw=0-copy=6-chain-color.mp4 percolated cylinder
J 20 1 0 5×104 kappa=20-tw=0-copy-1-chain-color.mp4 coarsening dynamics

Table S-I Summary of collected movies for systems with 1000 chains (N = 30) at number density ρ = 0.05. All movies available from our Github
repository https://github.com/mkmat/FENE-CB-model. Alternatively, you can click on the filename in the above table.
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Fig. S14 Selected snapshots for four independent realizations of sys-
tems with (a) κ = 5 and (b) κ = 10 at waiting time tw = 105 since system
preparation. Each chain has its own color. For κ = 5 and κ = 10 two
qualitatively different configurations are shown (unpercolated and perco-
lated in one dimension for κ = 5, and percolated in 3 and 2 dimensions
for κ = 10). For both κ, the second scenario occurred in only 2 out of
10 realizations.

ber of near-spherical and near-cylindrical droplets varies, and in
2 out of 10 realizations the system is percolated in one direction
through the formation of a single near-cylindrical strand that is
connected to itself via the periodic boundaries. For κ = 10, in 2
out of 10 realizations we observed the formation of a network
that is percolated over two dimensions only. Both, the formation
of a single strand and the two-dimensional network can be con-
sidered as finite size effects, as the probability for their formation
decreases with increasing system size. In fact, we did not observe
them for the larger systems with Nc = 50000 chains at unchanged

κ.

S7. Movies

We offer several types of movies (Tab. S-I) showing animated se-
quences of selected systems. All movies were made using Ovito
3.10.6.

(i) Movie A displays a selected filament rupture event for the
aged κ = 50 system (tw = 105, realization 1). This rupture event
is associated with the first large jump in the MSD of Figs. S1 and
16. Beads are colored according to their displacement magnitude.

(ii) Movies B,C,D show the time evolution of an aged sys-
tem between tw = 105 and tw = 2.1×106 (400 frames, frame rate
1/5000) for κ = 50 along with the animated bead displacement
histogram. The first frame, labeled by t = 0, corresponds to tw =

105. In each frame at time tw+t, displacement vectors are colored
by their actual displacement magnitude |r j(tw+t+δ t)−r(tw+t)|,
where δ t/5000 = 1,5,50 for movies B,C,D, respectively. The first
and last beads of each chain are rendered in red and yellow. A
snapshot of movie C is shown in Fig. S15. The movies highlight
those strands that break or dislocate. The different spacings δ t
allow to estimate the lag time required for large displacements
to occur, and they correspond to the choice of different δ t val-
ues in the calculation of the self-intermediate scattering function
Fs(q,δ t), as mentioned in Sec. S1 already.

(iii) Movies E,F,G show the formation of the systems for κ = 5,
10, and 50, respectively, all starting at tw = −1000. Frame rate
1/5. Movies E+,F+,G+ show the continuations of movies E,F,G,
starting at tw = 1000 at frame rate 1/50.

(iv) Movie H (screenshot in Fig. S16) shows the formation of
droplets and near-cylindrical bundles for one of the κ = 5 realiza-
tions starting at tw = 0 for a duration of 105 (400 frames, frame
rate 1/250). Here, each chain has its own color. The last frame
of movie H is displayed in Fig. S14-a. Movie I (screenshot in Fig.
S16-b) shows the formation of a percolated cylinder, again for
κ = 5.

(v) Movie J provides a visualization of the κ = 20 system be-
tween tw = 0 and tw = 5×104.
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https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-tw=1e5-copy=1-rupture.gif
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-tw=1e5-copy=1-dframes=1.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-tw=1e5-copy=1-dframes=5.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-tw=1e5-copy=1-dframes=50.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=5-init-chain-color-openr.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=10-init-chain-color-openr.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-init-chain-color-openr.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=5-tw=1e3-chain-color.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=10-tw=1e3-chain-color.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=50-tw=1e3-chain-color.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=5-tw=0-copy=1-chain-color-B.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=5-tw=0-copy=6-chain-color.mp4
https://www.complexfluids.ethz.ch/MK/2024-FENE-CB/kappa=20-tw=0-copy-1-chain-color.mp4
https://github.com/mkmat/FENE-CB-model
https://www.ovito.org/manual
https://www.ovito.org/manual


Fig. S15 Screenshot of movie C (κ = 50, realization no. 1, tw = 105)
highlighting the large displacement magnitudes produced by a filament
rupture event occurring between t = 350000 and t = 375000 (δ t = 25000).
The inset shows the histogram of displacement magnitudes (bin size 0.1).
According to Eq. (14), for a given t, δ t and q, the fraction of beads with
a displacement magnitude ∆r below q−1 essentially determines the value
of Fs(q,δ t), that one would measure at an aging time tw + t.

Fig. S16 Screenshot of the first frame of movie H at tw = 0.

S8. Github repository
The logarithmic fits described in Sec. 5.5.2 have been created
for various measured timeseries, including L f , d f , n f , V f , l0,
l1, Rg etc. Instead of collecting the four fitting parameters for
each quantity here, we provide a script that allows to evaluate
and visualize the fitted curves. The script is available at our
Github repository https://github.com/mkmat/FENE-CB-model.
This repository furthermore provides links to all movies, and a
LAMMPS script that allows to redo the simulations.
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