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Figure S1. (a) Image showing a particle chain of 300-μm Sn63Pb37 spheres on a PCB carrier, stretched between two copper 
pads. (b) Top-view images of the compressed chain at four different stages, corresponding to 3%, 6%, 22%, and 50% 
compressive strain, during which the resistance of the structure changes from 5 Ω to 10 mΩ.

Resistance measurements were conducted with a Zurich Instruments MFIA (5 MHz Impedance 
Analyzer) using an MFITF fixture and a specially designed, low-loss PCB carrier, minimizing 
parasitic effects by eliminating lead wires for precise particle chain measurements. Nearly 
monodisperse 300-μm particles were deposited between 1.5 × 1.5 mm copper pads, 1.4 mm apart on 
the PCB. Low-frequency (100 Hz, 0.3 V) measurements of the impedance’s real part (R) were used to 
minimize dielectric loss effects.
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Figure S2. Goodness of fit as a function of fitting cycles during parameter optimization for the Johnson-Cook model. The 
goodness of fit increases sharply in the initial cycles and then gradually approaches an asymptote near 100%, where further 
improvements become marginal. The dashed line at 100% represents an ideal fit. This trend highlights the progressive fine-
tuning of model parameters to closely align with experimental data, achieving an optimal fit within approximately 100 cycles, 
after which the changes stabilize.
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Figure S3. Compressive stress-strain curves for leaded and unleaded solder balls (a) Stress is calculated as applied force 
divided by the initial (equatorial) cross-sectional area of the uncompressed sphere. (b) Stress is presented as force divided by 
the actual contact area between the compressive slab and the sphere, which corresponds to a classical pressure-based approach.
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Figure S4. Engineering strain of a Sn63Pb37 solder ball with a diameter of 600 µm as a function of time, presented on (a) a 
linear-linear scale and (b) a log-log scale, under different compression forces ( ) at a temperature of 23°C. The initial strain 𝐹𝑁
increases rapidly and then stabilizes over time, indicating a gradual approach to equilibrium. This behavior is typical for 
viscoelastic materials, where the material initially resists deformation and then enters a flow state. 

Movie S1. 2D simulation results illustrating equivalent (local) stress distributions within a quarter-
sphere subjected to uniaxial compression. The left panel shows results for a perfectly plastic material 
model, while the right panel presents results for a Ludwik material model.

Movie S2. 2D simulation results displaying the distribution of equivalent (local) stress (left panel) and 
local strain rate (right panel) within a symmetrical section of a sphere under uniaxial compression. The 
simulation employs the J-C model with an applied engineering strain rate of 0.1 s–1.

Movie S3. 3D simulation results illustrating the stages of shape deformation for Sn63Pb37 particles under 
compression in two different configurations:  two particles in contact (left panel) and a segment of an 
infinitely long particle chain (right panel). Contact areas between neighboring particles are highlighted 
in blue (A2).


