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S1. T, predictions from MD simulations

Table S1: MD predictions for the T, of all compounds. Values from the two methods (density and energy of non-
bonded potential energy as a function of temperature) implemented to predict T, and comparison with available

experimental data.

Compound T, (K) based on T, (K) based on non- T, (K) experimental
density bonded potential energy
1-propanol 118.2+0.4! 118.5+6.5! 100 + 72
2-propanol 130.2+0.4! 130.9 + 11 119.4 + 42
1,2-propanediol 171.2+4.6° 180 + 0.5 170 + 3?2
1,3-propanediol 175.9+3.8! 178.4+0.3% 148 + 82
1,2,3-propanetriol 216.2 £+ 6.5? 218.9+5.8? 189 + 72
1-hexanol 149.6 +7.1% 150.7 £ 0.8 N/A
1,6-hexanediol 242.4+5.71 242.2 +7.11 N/A
1,2,6-hexanetriol 258.3+13.4! 257.9+9.21 204 + 62
1-nonanol 167.3+2.2 168.5+0.5 1532
1,2-nonanediol 251.6+4.6 248.7+12.1 N/A
1,2,9-nonanetriol 264.4+0.5 266.1+1.6 N/A
1-dodecanol 187.6+1.4 185.3+2.1 N/A
1,2-dodecanediol 259.4+2.3 2669+ 1.3 N/A
cyclohexanol 173.5+0.6 173.8+0.6 1613
cyclohexanediol 271.4+55 273.7 6.1 N/A
cyclohexanetriol 285.8+1.2 286.4+0.8 N/A
cyclononanol 186.3+1.8 190.3+0.35 N/A
Propionic acid 159.6 + 5.91 160.6 + 6.21 N/A
Malonic acid 275.3+21 271.7 £ 0.6 N/A
Hexanoic acid 183.2 +£7.2¢ 183.3+8? N/A
Adipic acid 280.2 +12.21 278.8 +11.9! N/A
Tricarballylic acid 316.2 +1.11 314.2 £ 0.5 N/A
Suberic acid 303.4+3.9¢ 290.5 + 0.7 N/A
Dimethylsuccinic acid 312.1+3.6 312.3+2.71 N/A




Dimethylhexanedioic acid 297.3+1.7¢ 296.5 + 1.41 N/A
Cyclobutanedicarboxylic 315.9+6.2? 309.5 + 0.6 N/A
acid

Norpinic acid 320.7+0.71 3204+ 11 N/A
3-methyl-1,2,3- 336.7 £+ 6.7¢ 351.2+11.1¢ 305 + 2%
butanecarboxylic acid

Nonanoic acid 195.3+6.9 201.6 +0.8 N/A
Azelaic acid 302.1+1.3 303.5+1.7 N/A
Dodecanoic acid 200+ 3.4 2041+1.1 N/A
Dodecanedioic acid 316.3+3.1 2953+ .6 N/A
Cyclopentanecarboxylic 2156+ 1.7 212.+12 N/A
acid

Cycloheptanecarboxylic 242.4+1.7 2439+1.2 N/A
acid

2-propanone 112 +0.45 108.8+1.9 1003
Propanal 105.5+1.8 104.7 £ 0.4 N/A
2-hexanone 1339+1.4 133.6£0.9 N/A
Hexanal 122.9+0.5 122.6+1.3 N/A
2-Nonanone 165.6 £0.3 163.3 N/A
Nonanal 157.2+0.5 152.2+2.4 N/A
Diacetyl 162.6+4.9 155.2+3.3 N/A
Cyclopropanone 118.3+0.8 106.5+0.9 N/A
Cyclohexanone 161.3+2 153.8+1.2 N/A
Cyclononanone 181.3+1 181.6+1.1 N/A
Pyruvic acid 192.6+2.6 1929+1.9 N/A
5-Oxohexanoic acid 205.3+0.9 204.8+1.1 N/A
6-Oxononanoic acid 225+1.4 227.1+0.2 N/A
Oxomalonic acid 285.7+2.1 286.1+4.2 N/A
2-Oxoadipic acid 294.2+3.4 286.3+0.4 N/A
Lactic acid 213.2+11.8 220.8 £2.52 207 +182
Tartronic acid 288.4+2.7 288.2+29 N/A
Hydroxy acetone 162.4+25 1631 N/A
Dihydroxy acetone 206.3+3 3059+1.3 N/A
Cis-pinonic acid 255.1+2.21 255 +0.91 N/A
Pinonaldehyde 185.1 +1.91 184.7 +2.21 N/A




S2. Effect of molecular weight and O:C ratio per category of compounds
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Figure S1: T; as a function of molecular weight (a) and O:C ratio (b) for the carbonyls.

B) Hydroxyls
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Figure S2: T, as a function of molecular weight (a) and O:C ratio (b) for the hydroxyls.



C) Carboxyls
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Figure S3: T; as a function of molecular weight (a) and O:C ratio (b) for the carboxyls.

D) Multifunctionals
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Figure S4: T; as a function of molecular weight (a) and O:C ratio (b) for the multifunctional compounds.



o
@

R?=0.5318

In(Tg (K))
L5

bt
[

[4)]

48F o

46 s s L L L L L
4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

In(Molecular Weight (g/mol))

Figure S5: Correlation of the glass transition temperature (7;) with the molecular weight (M) for the entire dataset.

a
The MD data have been fitted with a power-law of the form TgxM as suggested by Novikov and Rossler (2013)°
and the best fitting has been obtained for a = 0.62.
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Figure S6: Correlation of the glass transition temperature (T,) with the molecular weight (M) for the carbonyls. The

a
MD data have been fitted with a power-law of the form TgoM as suggested by Novikov and Rossler (2013)° and
the best fitting has been obtained for a = 0.42.
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Figure S7: Correlation of the glass transition temperature (7,) with the molecular weight (M) for the alcohols. The
a
MD data have been fitted with a power-law of the form Tg x M

as suggested by Novikov and Rossler (2013)° and
the best fitting has been obtained for a = 0.50.
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Figure S8: Correlation of the glass transition temperature (T;) with the molecular weight (M) for the carboxylic acids.

a
The MD data have been fitted with a power-law of the form TygxM as suggested by Novikov and Rossler (2013)°
and the best fitting has been obtained for a = 0.51.
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Figure S9: Correlation of the glass transition temperature (T,) with the molecular weight (M) for the multifunctional

a
organic compounds. The MD data have been fitted with a power-law of the form Tg x M as suggested by Novikov
and Rossler (2013)° and the best fitting has been obtained for a = 0.43.

S3. Evaluation of the sensitivity of dataset

To investigate the robustness and sensitivity of our parameterization we examine the variation of the contribution
factors. The variation is examined using the leave-one-out scenario, in which we remove all the datapoints once and
examine the change in the contribution for each factor considered.
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Figure S10: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the intercept to deviate by more than 5%.



Coefficient for Carbons
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Figure S11: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of carbons to deviate by more than 5%.
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Figure S12: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of oxygens to deviate by more than 5%.



Coefficient for -OHs
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Figure S13: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of hydroxyls to deviate by more than 5%.
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Figure S14: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of caboxyls to deviate by more than 5%.



Coefficient for -COs
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Figure S15: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of carbonyls to deviate by more than 5%.
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Figure S16: Variation of the intercept's contribution in a leave-one-out scenario with a 5% tolerance threshold. The
annotated compounds are those whose removal causes the contribution of rings to deviate by more than 5%.



S4. Estimating the Glass Transition Temperature using the VFT equation
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Figure S17: Indirect estimation of the T, of 1-dodecanol by fitting the viscosity data of Fu et al.® with the VFT
equation, Eg. (2) in the main text.
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Figure S18: Indirect estimation of the T, of 1,12-dodecanediol by fitting the viscosity data of Fu et al.® with the VFT
equation, Eq. (2) in the main text.



S5. Comparison with other parameterizations
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Figure S19: Comparison of the DeRieux et al.” parametrization against measurements. The solid line is the 1:1 curve
while the dashed black line indicates the +10%, and the dashed red line represents the +20% deviations from 1:1.
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