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I. SUPPORTING INFORMATION 

A. In-plane actuation assumption 

The flagellum’s rectangular cross-section is designed with a h:w (h is the flagellum height and w 
is the flagellum width, see Figure 1B) ratio of 10:1 to limit out-of-plane bending. This h:w ratio 
was chosen based on the ratio of in-plane to out-of-plane deflection of a cantilever beam under a 
distributed load. The maximum deflection of a straight cantilever beam under a distributed load is 
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, where P is the distributed load, L is the length, E is the elastic modulus, and I is the 

area moment of inertia. For a rectangular cross-section loaded in-plane, 𝐼	 = )*"
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. Using these 

relations, we calculate that a straight cantilever beam with a h:w ratio of 10:1 would exhibit 100 
times more deflection in the in-plane direction than in the out-of-plane direction, assuming the 
same distributed load P in both loading directions. The relative out-of-plane deflection is 
anticipated to be even lower due to the in-plane actuation that induces a distributed load primarily 
in-plane. 

 
We have also quantified the out-of-plane motion by measuring the displacement of the end of the 
flagellum in simulations for θ0 = 90°. As shown in Figure S1, the end displacement is 
approximately three orders of magnitude lower than the height of the flagellum (5 mm), 
demonstrating that the flagellum motion was primarily in-plane. 
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B. Frequencies chosen for analysis 

This study focuses on three frequencies (ƒ = 1.5, 3.0, and 6.0 Hz) based on the preliminary 
simulation results shown in Figure S2 for a flagellum with θ0 = 90°. We primarily focus on 
relatively low frequencies to better understand the negative propulsion regime. We chose ƒ = 3.0 
Hz, as it was near the minimum 〈Fp〉. We chose ƒ = 6.0 Hz, as the 〈Fp〉 was positive at 
approximately the same magnitude as the 〈Fp〉 at 3.0 Hz, and because 6.0 Hz was near the upper 
limit for the motor speed in the experimental setup. We chose ƒ = 1.5 Hz as the lower bound due 
to hardware limitations in the experimental setup, as the motor would stall at lower speeds. 
 

 

 

  

Figure S1: Out-of-plane displacement of the end of the flagellum in simulations for θ0 = 90°. 

Figure S2: Time-averaged propulsive force over a 
range of frequencies for a flagellum with θ0 = 90°. 
Data are from FE simulations. The top axis shows the 
non-dimensional Sp.  



 

C. Macroscale experiment load cell information 

Force data were acquired using a load cell (ANYLOAD 108AA-100g, Tacuna Systems) attached 
to the top of the actuation assembly. The load cell’s datasheet reports the following specifications. 
Full scale output 1.0 mV/V ± 20%, non-linearity < ± 0.023%, repeatability < ± 0.023%, hysteresis 
error < ± 0.023%, creep in 30 min. < ± 0.050%.  

 

D. Steady state 

To determine the number of oscillations required to reach a steady state, we performed experiments 
with the flagellum having θ0 = 90° and calculated the average Fp for each oscillation. As shown 
in Figure S3, experiments at 〈ƒ〉 = 6 Hz, 4 Hz, and 2 Hz reached a steady state before approximately 
oscillation 40. Based on these results, the experimental 〈Fp〉 and 〈ƒ〉	were calculated using the 
respective data between oscillations 40 and 50. 

  

Figure S3: Experimental propulsive force of the flagellum with θ0 = 90° over 100 oscillations. Datapoints represent the average 
Fp in each oscillation for experiments at 〈ƒ〉 = 6 Hz (top), 4 Hz (middle), and 2 Hz (bottom). To enable visualization of the steady 
state, the Fp data are divided by the average Fp between oscillations 80 and 100. A running average (centered across 5 datapoints) 
is included in each plot. 



 

E. Compensating for the no-flagellum force in the experimental Fp 

As shown in Figure S4, the actuation assembly used in the macroscale experiments produces a 
non-zero propulsive force (grey data) during the transverse oscillation. This experimental “no-
flagellum” force can be attributed to imperfect balancing in the actuation assembly and the motion 
of the slider (i.e., the segment that attaches to the clamped end of the flagellum) through the fluid 
during the transverse oscillation. To compensate for the no-flagellum force in the experimental 
results, we can subtract the experimental results by a fit to the no-flagellum data. A comparison 
between the plots in Figure S4 shows that the second-order polynomial fit to the no-flagellum data 
results in the corrected data being closer to zero across the measured ƒ range (see blue data in 
Figure S4B).  

In this study, we compensated for the no-flagellum force by subtracting Fp by the second-order 
polynomial fit to the no-flagellum data. For example, in Figure 2A in the main text, the 
experimental 〈𝐹𝑝⟩****** are corrected using the following equation: Fpcorrected = Fp – (-0.098ƒ2 + 2.44ƒ 
– 1.63). By way of comparison, Figure S5 shows the same experimental 〈𝐹𝑝⟩****** without correcting 
for the no-flagellum force. A comparison between Figure 2A and Figure S3 demonstrates that 
correcting for the no-flagellum force results in experimental 〈𝐹𝑝⟩****** that more closely agree with the 
simulation 〈𝐹𝑝⟩******. 

 

 

Figure S4: Compensating for the no-flagellum force. Time-averaged propulsive force 〈Fp〉 across a range of ƒ from 
approximately 1.5 Hz to 6.0 Hz. Grey data show 〈Fp〉 for the actuation assembly with no flagellum attached (“no-
flagellum”). In A, a linear fit is calculated from the no-flagellum data (red line, y = 1.72x - 0.50). In B, a second-order 
polynomial fit is calculated from the no-flagellum data (blue line, y = -0.098x2 + 2.44x - 1.63). To compensate for the 
no-flagellum force in the experimental results, we can subtract the experimental results by the linear fit (shown in A) 
or by the second-order polynomial fit (shown in B). In both plots, the error represents the standard deviation across 10 
oscillations at steady state. 



 

 

  

Figure S5: Curvature-dependent propulsion, where experimental data have not been corrected to account for the no-
flagellum force. The plot shows normalized 〈𝐹𝑝⟩&&&&&& as a function of θ and 〈ƒ〉. All designs have the same dimensions (L = 22 
mm, h = 5 mm, w = 0.5 mm) and were actuated at three frequencies (ƒ = 1.52 ± 0.03, 3.03 ± 0.01, and 6.00 ± 0.03 Hz; error 
represents standard deviation across all experimental trials at each frequency) with β = 0.25. Experimental (solid) and 
simulation (open) data were acquired at each ƒ and θ0, where experimental error bars represent the standard deviation across 
20 oscillations at steady state (10 oscillations each for two experiments at each ƒ). In the plot, the experimental data have 
not been corrected to account for the no-flagellum force. 



F. Simulation mesh 

The computational meshes were generated in COMSOL with a fine mesh setting. Sample 
simulation domains illustrating the mesh design (Figure S6) show a close-up of the flagella with 
surrounding fluids. We locally refined the mesh to ensure we captured the complete physics near 
the flagella. 

  

  

Figure S6: Sample simulation domains illustrating the mesh design. The images show a cross-sectional view at z = 0 for the 
three-dimensional mesh. The color represents mesh size, showing local refinement of the mesh around the flagella. 



 

G. Differences in the geometrical setups between the experiments and simulations 

To understand the effect of the different geometrical setups on Fp, we performed simulations 
with the flagellum having θ0 = 90° (chosen due to the differences between the experimental and 
simulation results). We included a rigid rectangular prism representing the slider (i.e., the orange-
colored segment extending from the actuation assembly to the flagellum in Figure 1D) that is 
attached to the fixed end of the flagellum and moves with the actuation. The slider was critical to 
perform the transverse oscillation in the experimental setup, but was not included in the 
simulations performed for Figure 2A. We hypothesized that the slider could affect the Fp by 
changing the flow characteristics near the flagellum. Consequently, we performed simulations 
with and without the slider, where we used a smaller fluid volume to enable an even finer mesh 
size. A comparison of the 〈Fp〉 with and without the slider is shown in Figure S7.  

A comparison of the results in Figure S7A shows that the slider increases 〈Fp〉 across the studied 
range of frequencies. This increase in Fp due to the slider may be an overprediction, as the slider 
in the simulation was a rectangular prism while the experimental slider had a diamond cross-
section to reduce drag. On the other hand, imperfections in the experimental setup (e.g., 
clearance between parts, motor vibration) likely caused small vibrations in the experimental 
slider’s motion that were not replicated in the simulation. The results in Figure S7A suggest that 
some of the differences between the experimental and simulation results can be attributed to 
differences in the geometrical setup from the slider. 

 

  

Figure S7: Effect of the slider on Fp. (A) Simulation results of 〈Fp〉 at ƒ = 1.5, 3.0, and 6.0 Hz for the 
flagellum (green data) and the flagellum + slider (pink data). (B) Images showing the slider (pink) attached 
to the flagellum (grey) with θ0 = 90°. 



 

H. Transition between positive and negative propulsion 

To further investigate the transition between positive and negative propulsion, we performed 
additional simulations using flagella with θ0 = 70°, 80°, and 85°. The results, shown in Figure 
S8, show that the transition between positive and negative propulsion occurs near θ0 = 80° at 1.5 
Hz and near θ0 = 85° at 3.0 Hz. 

The transition between positive and negative propulsion near θ0 = 90° can be understood by 
using a single-spring reduced-order model in previous work.1 The model consists of two rigid 
rods of equal length, where rod 1 is clamped perpendicular to the transverse actuation and rod 2 
is attached to rod 1 with a spring that is undeflected at an offset angle φI. Because the rods are 
rigid and rod 1 is at the same orientation throughout the oscillation, rod 1 does not exhibit any 
net propulsion. Consequently, the 〈Fp〉 depends entirely on rod 2. Using this model, the authors 
showed that 〈Fp〉 < 0 when φI > 45°, 〈Fp〉 = 0 when φI = 45°, and 〈Fp〉 > 0 when φI < 45°. The 
zero 〈Fp〉 at φI = 45° indicates that the time-varying Fp had positive and negative propulsion 
with equal magnitude. The negative 〈Fp〉 when φI > 45° indicates that the time-varying Fp had a 
larger magnitude of negative propulsion than positive propulsion during the oscillation.  

We can use the previous reduced-order model to understand the transition between negative and 
positive propulsion in the present work by simplifying the intrinsically curved profile as a 
straight rigid rod. Specifically, we model the flagellum with uniform intrinsic curvature as a 
straight rod connecting the flagellum endpoints, where φI = θ0/2 due to geometric relations. 
Using this assumption, the model would predict negative propulsion when θ0 > 90° (as θ0 = 2φI), 
which is relatively close to the transition in the experimental and simulation results between θ0 = 
60° and 90°. We anticipate that the transition point in the present work is lower than the θ0 = 90° 
prediction, as the curved flagellum can more easily decrease θ (i.e., straighten) than increase θ 
due to the increased length perpendicular to the transverse oscillation when traveling in the 
positive y-direction.  
 

 

Figure S8: Simulation results of 〈Fp〉 for three frequencies 
(1.5, 3.0, and 6.0 Hz). The results show that the transition 
between positive and negative propulsion occurs near θ0 = 80° at 
1.5 Hz and near θ0 = 85° at 3.0 Hz.	



I. Full experimental results from Figure 2A 

Our simulation and experimental results show that the 〈Fp〉 for the flagellum with θ0 = 180° is 
positive (see Figure 2A, Figure S9, and Figure S11), which means that the curvature-dependent 
〈Fp〉 does indeed go through another sign reversal. We suspect that the positive force at θ0 = 180° 
could be due to fluid drag acting primarily on the convex surface of the semi-circular flagellum 
in both oscillation directions, whereas with designs having lower θ0, actuation in the positive y-
direction causes fluid drag on the flagellum’s concave surface. While future studies could 
investigate this finding further, the sign reversal and positive force at θ0 = 180° are unlikely to be 
useful in practical implementation, as the free end of a flagellum with θ0 > 180° would be past 
the driven end (in the positive x-direction). The relatively low 〈Fp〉 for the flagellum with θ0 = 
180° is also likely due to the reduced length of the flagellum perpendicular to the oscillation 
direction (as this length exhibits the most drag-induced forces from the transverse actuation). 
Consequently, strategies for optimizing propulsion for configurations exhibiting both positive 
and negative strokes may need to account for the length of the flagellum that is perpendicular to 
the oscillation direction. 

  

Figure S9: Detailed representation of the data in Figure 2A. The data points show the 〈Fp〉 across 
one oscillation, where there are 20 oscillations (2 tests, each with 10 oscillations) at steady state for each 
combination of ƒ and θ0. The horizontal line through the data and box represents the mean, the box 
represents 25% to 75%, and the whiskers represent the mean ± one standard deviation. The data for the 
experiment with ƒ = 1.5 Hz and θ0 = 120° show that only one of the 20 oscillations had a mean 
propulsive force above zero, and that the standard deviation is entirely below zero. The results also 
show that increasing ƒ tends to increase the standard deviation due to the increased amplitude of the 
time-varying Fp.  



 

J. Propulsion at higher β 

To investigate the effect of β on 〈Fp〉 in the present study, we performed experiments and 
simulations with β = 0.5 using the flagellum with θ0 = 120°. We hypothesized that increasing β 
would increase |〈Fp〉|, as previous literature reported that the propulsive force scales with β2.1–

5 We also hypothesized that increasing β would decrease the signal-to-noise ratio of the system 
by increasing the propulsive force relative to the noise from the experimental setup. The results 
of the experiments and simulations are shown in Figure S10.  

The experimental results in Figure S10C and the simulation results in Figure S10F suggest that 
|〈Fp〉| scales with β2, which aligns with our hypothesis and is consistent with previous studies.1–5 
Interestingly, these results show the propulsive force scaling with β2 despite the differences 
between the experimental and simulation results. As we have noted, we suspect that differences 
between the experimental and simulation results may be attributed to differences in the 
geometrical setup (e.g., from the slider that is used for the actuation in the experimental setup).  

The experimental results in Figure S10C show that the experimental results for 〈Fp〉/β2 had 
relatively smaller error bars with β = 0.5, which agrees with our hypothesis that the signal-to-
noise ratio would increase with increasing β. A comparison between Figure S10B and Figure 
S10C shows that the improvement in the signal-to-noise ratio is due to the experimental error 
being comparable between the results with β = 0.25 and 0.5, while the force magnitude increased 
with increasing β. Building upon this demonstration, future studies could similarly perform 
experiments at higher β to reduce the relative noise in the experimental setup (e.g., from the 
motor vibration). 

We also note that the results in Figure S10D further show the negative propulsion at ƒ = 1.5 Hz 
(Sp = 1.5) with the flagellum having θ0 = 120°. In the plot, each datapoint represents the average 
propulsive force for one oscillation at steady state. All 30 datapoints (3 experiments with 10 
oscillations each) are below zero, which aligns with the negative propulsion shown in Figure 2A.  



 

  

Figure S10: Experimental and simulation results for a flagellum with θ0 = 120° oscillated at β = 0.25 and β = 
0.5. (A) Experimental time-averaged propulsive force 〈Fp〉 across a range of ƒ from approximately 1 Hz to 5 Hz. 
Grey data show 〈Fp〉 for the actuation assembly with no flagellum attached (“no-flagellum”) when oscillated at β = 
0.5. A second-order polynomial fit is calculated from the no-flagellum data (purple line, y = -0.36x2 + 10.18x – 6.31). 
This fit was used to compensate for the no-flagellum force in the experimental results with β = 0.5. (B-C) 
Experimental 〈Fp〉 at β = 0.25 (blue data, taken from Figure 2A), and β = 0.5 (purple data), where the error bars 
represent the standard deviation across 10 oscillations at steady state. In C, the 〈Fp〉 is divided by β2. Experiments 
with β = 0.5 at ƒ = 6.0 Hz were not performed due to the high translational velocity at β = 0.5 that caused the slider to 
break. (D) Fp for ten oscillations at steady state in three experiments at β = 0.5. (E-F) Simulation results for 〈Fp〉 at β 
= 0.25 (blue data, taken from Figure 2A), and β = 0.5 (purple data). In F, the 〈Fp〉 is divided by β2.	



 

K. Sp-dependent propulsion 

 

  

Figure S11: Effect of Sp and θ0 on ⟨𝑭𝒑⟩&&&&&&. The data are the same 
as shown in Figure 2A, here represented differently to better 
demonstrate the effect of Sp. Open datapoints represent simulation 
results, while filled datapoints represent the experimental mean 
with error bars representing one standard deviation. Lines 
connecting the datapoints (dashed: simulation, solid: experiment) 
are included to help guide the eye. 



 

L. Comparison of the flagellum curvature 

 

  

Figure S12: Comparison of flagellum curvature between 
experiments and simulations. Experimental images at 
approximately 0%, 25%, 50%, 75%, and 100% of an 
oscillation for flagella with θ0 = 120° (top row), 90° (middle 
row), and 60° (bottom row). To enable comparison with the 
simulations, the simulation profile is overlaid onto each 
image in red with 50% transparency. 



 

II. ESI VIDEO CAPTIONS 

ESI Video 1: Experimental video of the flagellum designed with θ0 = 0° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 2: Experimental video of the flagellum designed with θ0 = 30° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 3: Experimental video of the flagellum designed with θ0 = 60° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 4: Experimental video of the flagellum designed with θ0 = 90° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 5: Experimental video of the flagellum designed with θ0 = 120° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 6: Experimental video of the flagellum designed with θ0 = 150° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 

ESI Video 7: Experimental video of the flagellum designed with θ0 = 180° at 〈ƒ〉 ≈ 1.5 Hz. In the 
video, the flagellum is viewed from above, and the positive direction of Fp is to the right. 
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