Supplementary Information

Self-Assembled Tetracyanoquinodimethane Derivatives: Differential Fluorescent Responses on Sensing Copper and Mercury Ions in Aqueous Medium

Anuradha Sureshrao Mohitkar, a Nilanjan Deyb and Subbalakshmi Jayanty c*

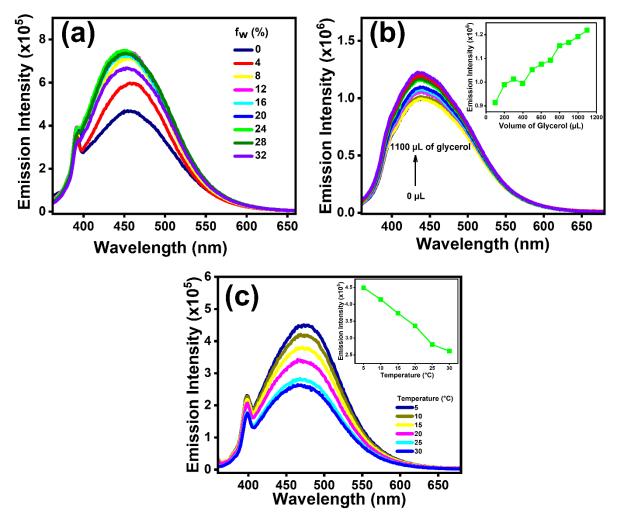
 a,b,c Department of Chemistry, Birla Institute of Technology and Science, Pilani-Hyderabad Campus, Jawaharnagar, Kapra Mandal, Hyderabad - 500078, Telangana State, India.

Correspondence e-mail: jslakshmi@hyderabad.bits-pilani.ac.in

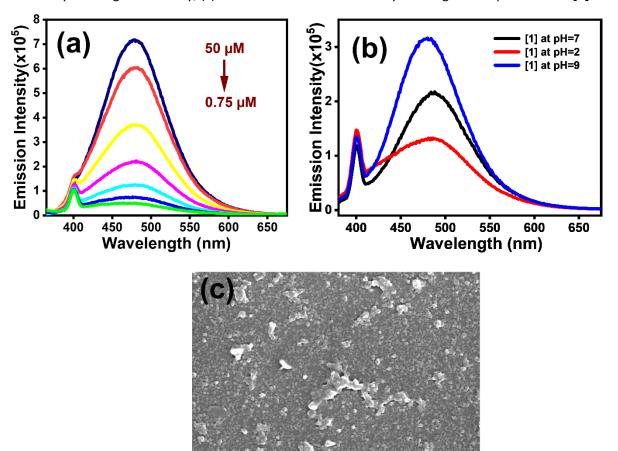
S: Supplementary information

Table of Contents

Contents	Page No.
Table S1 (a) Comparative table of fluorescent probe with varying parameters against metal ion sensing.	S3-S4
Fig. S1 (a) Increase of emission intensity with the increase in water fraction (b) effect of viscosity on intensity (c) effect of temperature for [1].	S5
Fig. S2 (a) Lowering of emission intensity with the decrease in concentration (b) effect of pH on intensity (c) SEM image for [1].	S6
Fig. S3 [2] (a) Absorption spectra and (b) emission spectra (λexc = 370 nm) depicting solvatochromism (c) effect of aggregation on emission intensity, (d) lowering of emission intensity with the decrease in concentration.	S7
Fig. S4 [3] (a) Absorption spectra and (b) emission spectra (λ exc = 375 nm) depicting solvatochromism (c) effect of aggregation on emission intensity, (d) lowering of emission intensity with the decrease in concentration.	S8
Fig. S5 Emission intensity changes with effect of (a) temperature and (b) pH (c) SEM image for [2].	S9
Fig. S6 Emission intensity changes with effect of (a) temperature and (b) pH (c) SEM image for [3].	S10
Fig. S7 Variation in emission intensity of [2] with increase in (a) Cu ²⁺ and (b) Hg ²⁺ .	S11
Change in absorbance with increase in concentration of (c) Cu ²⁺ and (d) Hg ²⁺ for [2].	
Fig. S8 Variation in emission intensity of [3] with increase in (a) Cu ²⁺ and (b) Hg ²⁺ .	S12
Change in absorbance with increase in concentration of (c) Cu ²⁺ and (d) Hg ²⁺ for [3].	
Fig. S9 (a) Stern-Volmer plot, (b) K _{sv} calculation, (c) LOD calculation, depicting quenching of [1]	S13
on addition of Cu ²⁺ ion.	
Fig. S10 Stern-Volmer plots for (a) Cu ²⁺ and (b) Hg ²⁺ , K _{sv} calculation (c) Cu ²⁺ and (d) Hg ²⁺ ,	S14
LOD calculation (e) Cu ²⁺ and (f) Hg ²⁺ , for [2].	
Fig. S11 Stern-Volmer plots for (a) Cu ²⁺ and (b) Hg ²⁺ , K _{sv} calculation (c) Cu ²⁺ and (d) Hg ²⁺ ,	S15
LOD calculation (e) Cu ²⁺ and (f) Hg ²⁺ for [3].	
Fig. S12 (a) ¹ H NMR and (b) IR spectra showcasing the effect of metal ions on [2].	S16
Fig. S13 (a) ¹ H NMR and (b) IR spectra showcasing the effect of metal ions on [3].	S17
Fig. S14 EDAX (a) spectra showing elemental composition and (b) mapping depicting elemental presence for [1]	. S18-S19
Fig. S15 EDAX (a) spectra showing elemental composition and (b) mapping depicting elemental presence for [2]	. S20-S21
Fig. S16 EDAX (a) spectra showing elemental composition and (b) mapping depicting elemental presence for [3]	. S22-S23
Fig. S17 Variation in emission intensity of [1] against Cu ²⁺ ions with (a) pond water sample and (b) tap water sample	nple. S24


Table S1 Comparative table for fluorescent probes with respect to synthesis condition, sensing ions, detection method, LOD, solvent medium.

Fluorescent Probe	Synthesis Condition	Sensing Ions & Detection Method	LOD (M)	Solvent Medium	References
[Co3(L)2(H2O)6]n (1) L= 1,3,5-(tris(1-(4- carboxyphenyl) -1h-pyrazol-3-yl) benzene (H3L)	In autoclave Temperature :140 °C, Time: 72 h, Multistep synthesis	Cu ²⁺ Fluorescence (Quenching) Hg ²⁺ Fluorescence (Quenching)	Cu ²⁺ 9.91 × 10 ⁻⁷ Hg ²⁺ 1.26 × 10 ⁻⁵	N,N- dimethylac etamide (DMA)	[1]
2-(4-Bromophenyl)ethene-1,1,2- triyl)tribenzene (2) and 4-(1,2,2- triphenylvinyl)benzaldehyde strong fluorescent SH TSC-TPE-TSC in EtOH/H ₂ O	Temperature : -78 °C, Time : 48 h, Multistep synthesis	Cu ²⁺ Fluorescence (Quenching) Hg ²⁺ Fluorescence (Quenching)	Cu^{2+} 2.42×10^{-6} Hg^{2+} 0.39×10^{-6}	EtOH/H2O (v/v:1/1)	[2]
Quinoxaline—hydrazinobenzothiazole N NH Quinox-hBT	Temperature : 70 °C, Time: 12 h, Multistep synthesis	Cu ²⁺ Fluorescence (Enhancement) Co ²⁺ Fluorescence (Enhancement) Ni ²⁺ Fluorescence (Enhancement) Hg ²⁺ Fluorescence (Enhancement)	Cu ²⁺ 1.16 × 10 ⁻⁷ Hg ²⁺ 1.14 × 10 ⁻⁷	THF: H2O (1:9, v/v) (pH 7.4, 20 mM HEPES buffer)	[3]


4-amino antipyrine linked bis-1,2,3-triazole	Temperature : RT, Time: 18 h, Multistep synthesis	Cu ²⁺ Absorbance (Enhancement) Hg ²⁺ Absorbance (Enhancement)	Cu ²⁺ 63 × 10 ⁻⁶ Hg ²⁺ 56 × 10 ⁻⁶	DMSO	[4]
Tetraphenylethylene (TPE) based COF nanosheets	Temperature : 120 °C, Time: 5 days, Multistep synthesis	Cu ²⁺ Fluorescence (Quenching)	0.28 × 10 ⁻⁹	Neutral F127 surfactant in aqueous media	[5]
This Work	Temperature : 75 °C, Time: 3 h, Simple single step synthesis	Cu ²⁺ Fluorescence (Quenching) Hg ²⁺ Fluorescence (Quenching in case of [2,3] and enhancement in [1])	Cu ²⁺ 0.751 × 10 ⁻⁶ Hg ²⁺ 3.1937 × 10 ⁻⁶	MeCN: H₂O (1:9)	

References

- 1. Y. Xi, M. Hua, L. Gao, Q. Sun, E. Ma, W. Hu, M. Li, W. Liu, J. Sun and C. Zhang, *J. Mol. Struct.*, 2023, **1284**, 135456.
- 2. S. Bayindir , A. S. Hussein, F. Lafzi and M. Toprak, J. Mol. Liq., 2023, 382, 121939.
- 3. D. B. C. Leslee, U. Venkatachalam, J. Gunasekaran, S. Karuppannan and S. Bharathi Kuppannan, *Org. Biomol. Chem.*, 2023, **21**, 4130–4143.
- 4. S. Kumar, B. Lal, R. K. Tittal, G. Singh, J. Singh, G. Vikas D, R. Sharma and J. K. Sabane *Sens. Diagn.*, 2023, **2**, 1267–1276.
- 5. Zi. Yan, L. Fang, Z. He, H. Xie, B. Liu, B. Guo and Y. Yao, Small, 2022, 18, 2200388.

Fig. S1 (a) Increase of emission intensity with the increase in water fraction, (b) enhanced emission intensity with higher viscosity, (c) decrease in emission intensity with higher temperature for [1].

Fig. S2 (a) Lowering of emission intensity with the decrease in concentration, (b) enhanced emission intensity with higher pH, (c) formation of aggregates observed in SEM image for [1].

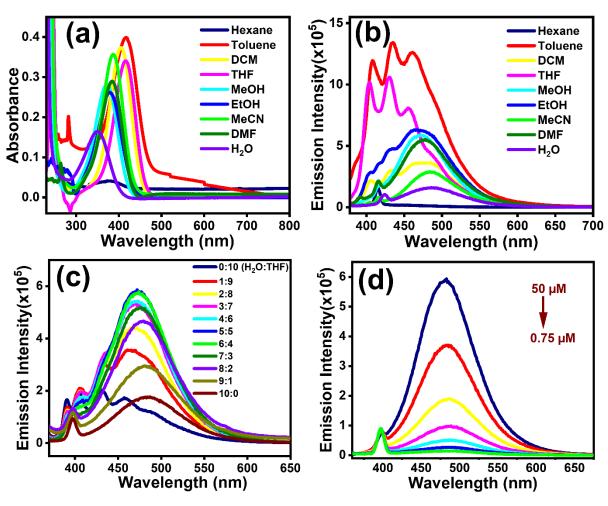
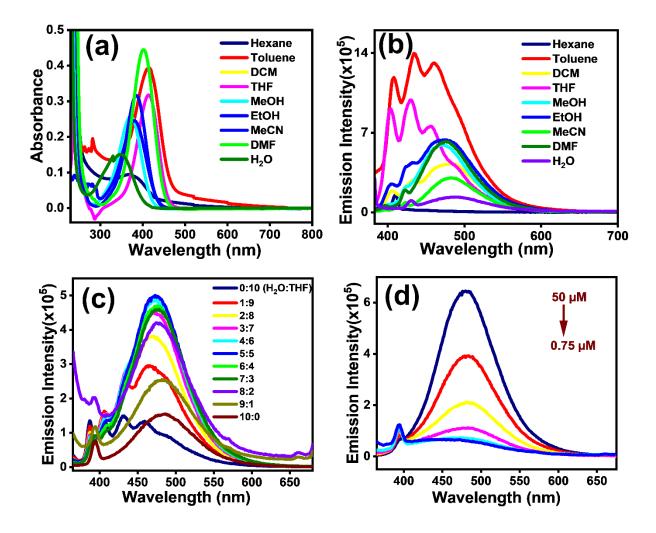
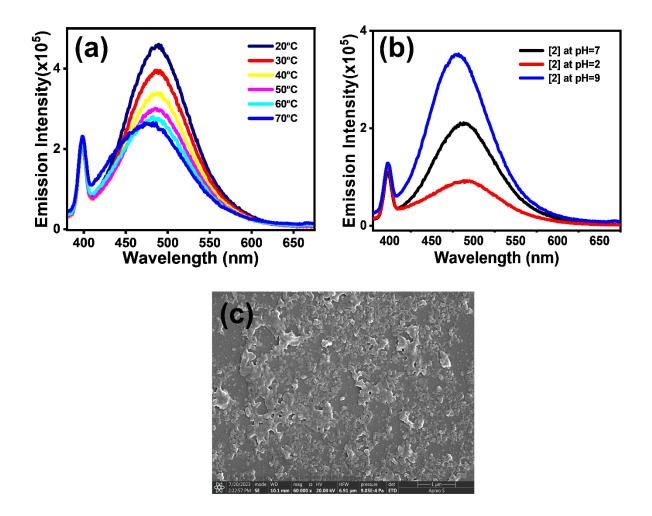
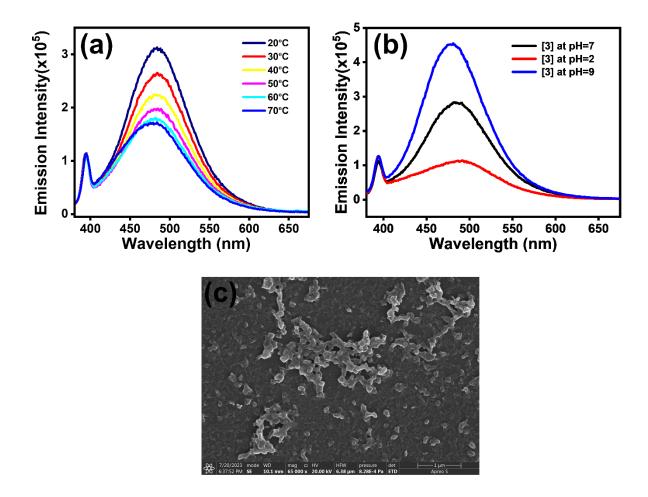
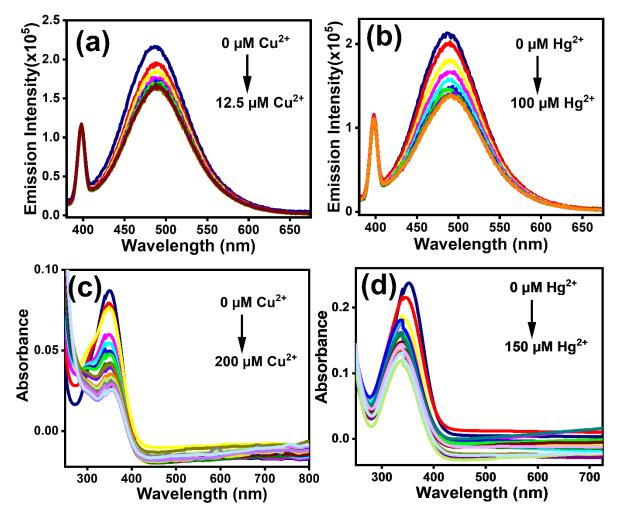
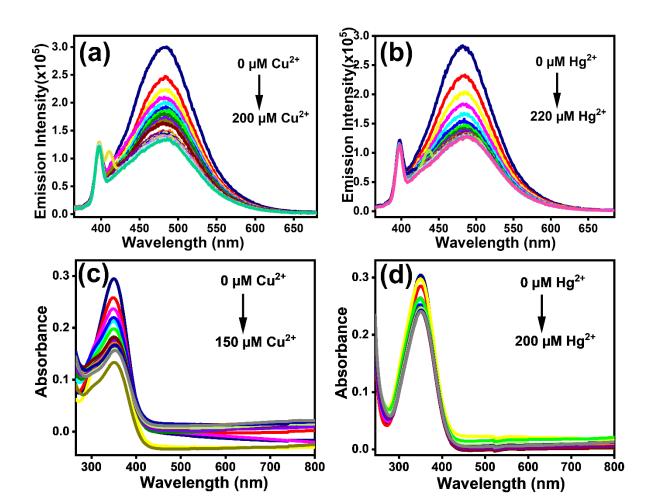
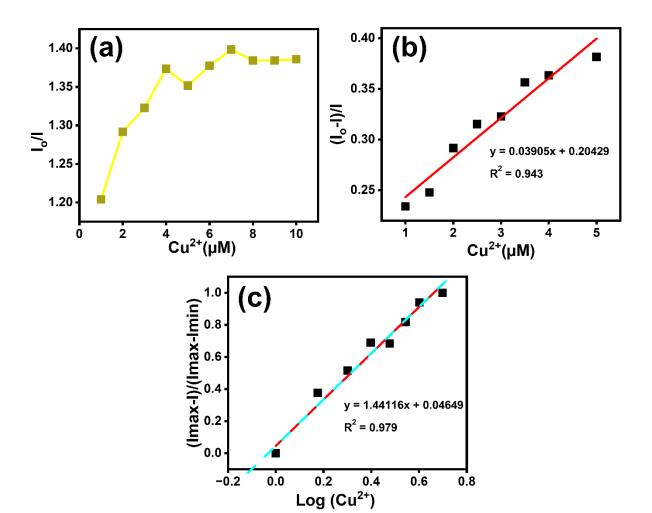


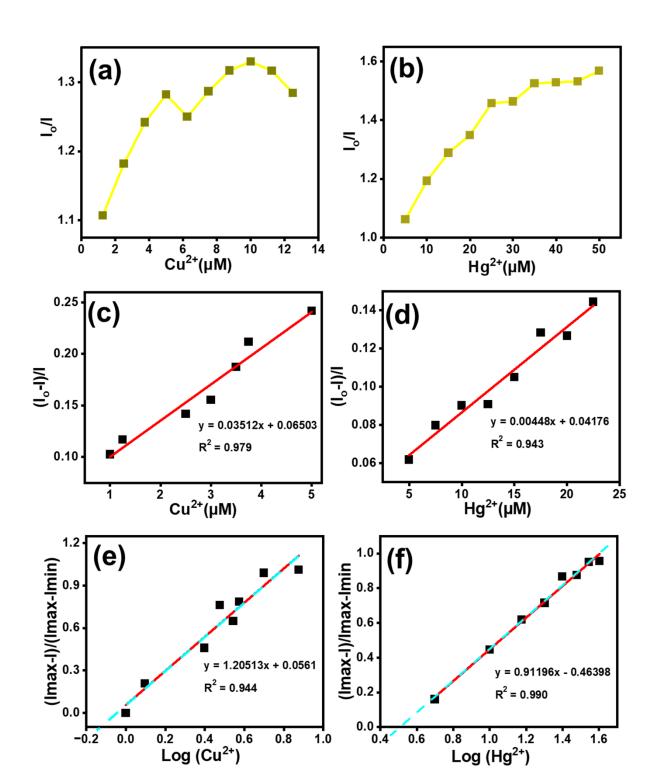
Fig. S3 [2] (a) Shift in absorption spectra and (b) emission spectra ($\lambda_{exc} \sim 370$ nm) with increase in polarity depicting solvatochromism, (c) quenching of emission intensity due to aggregation in varying proportions of H₂O:THF solvent mixture, (d) lowering of emission intensity with the decrease in concentration.

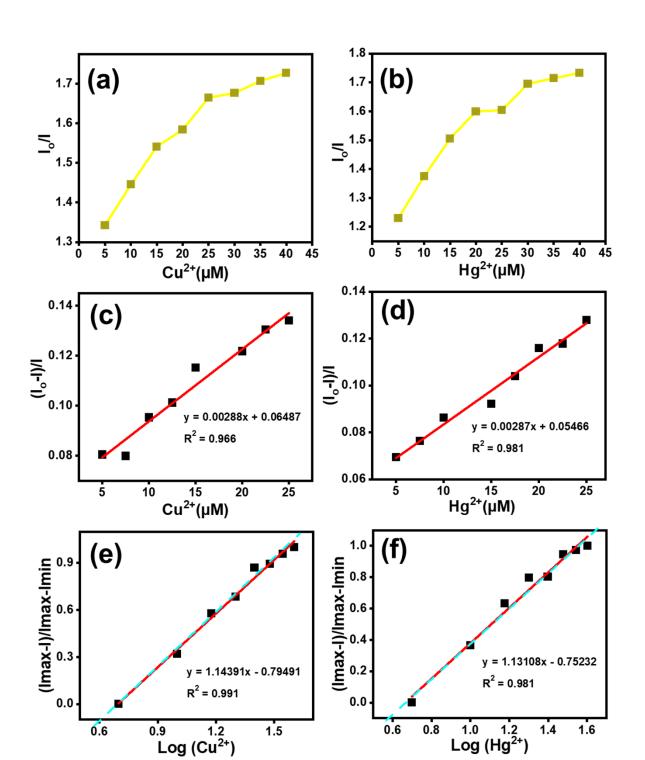




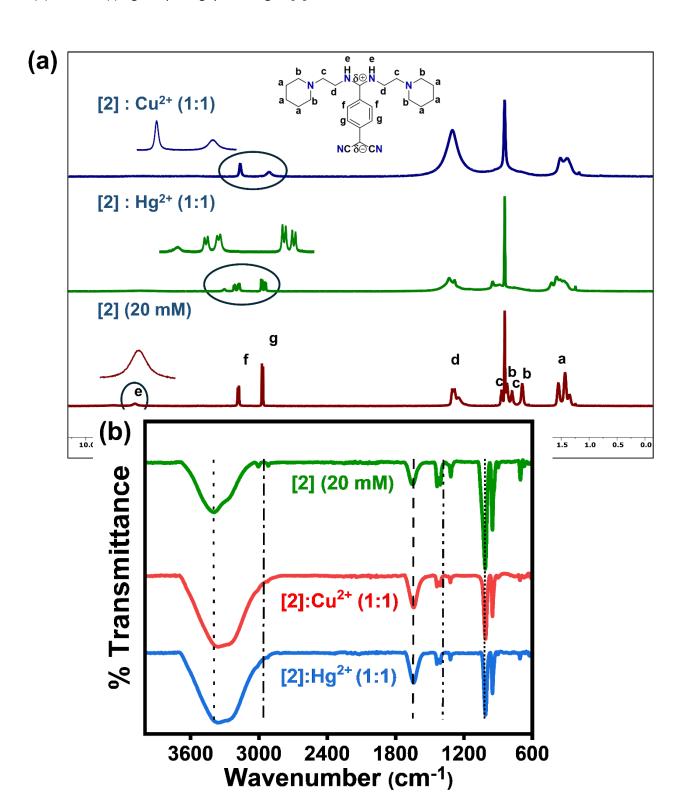

Fig. S4 [3] (a) Shift in absorption spectra and (b) emission spectra ($\lambda_{exc} \sim 375$ nm) with increase in polarity depicting solvatochromism, (c) quenching of emission intensity due to aggregation in varying proportions of H_2O :THF solvent mixture, (d) lowering of emission intensity with the decrease in concentration.


Fig. S5 (a) Lowering of emission intensity with the increase in temperature, (b) enhanced emission intensity with higher pH, (c) formation of aggregates observed in SEM image for [2].


Fig. S6 (a) Lowering of emission intensity with the increase in temperature, (b) enhanced emission intensity with higher pH, (c) formation of aggregates observed in SEM image for [3].


Fig. S7 Variation in emission intensity of [2] with increase in metal ion concentration: quenching effect for (a) Cu^{2+} and (b) Hg^{2+} . Lowering of absorbance with an increase in concentration of (c) Cu^{2+} and (d) Hg^{2+} for [2].


Fig. S8 Variation in emission intensity of [3] with increase in metal ion concentration: quenching effect for (a) Cu^{2+} and (b) Hg^{2+} . Lowering of absorbance with an increase in concentration of (c) Cu^{2+} and (d) Hg^{2+} for [3].


Fig. S9 (a) Stern-Volmer plot, (b) K_{sv} calculation, (c) LOD calculation, depicting quenching of [1] on addition of Cu^{2+} ion.

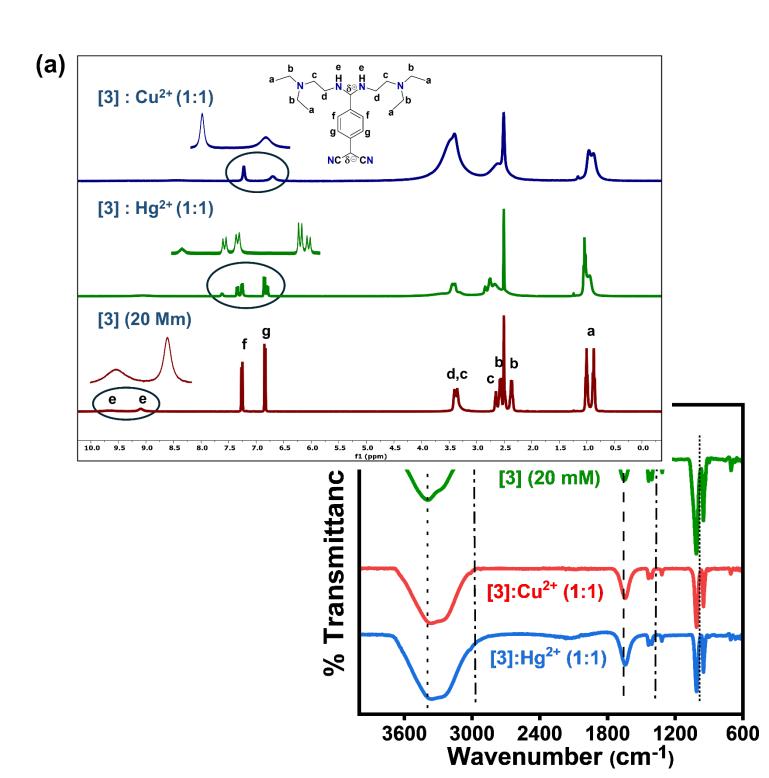

Fig. S10 Stern-Volmer plots for (a) Cu^{2+} and (b) Hg^{2+} , K_{sv} calculation (c) Cu^{2+} and (d) Hg^{2+} , LOD calculation (e) Cu^{2+} and (f) Hg^{2+} , depicting quenching of [2] on addition of metal ion.

Fig. S11 Stern-Volmer plots for (a) Cu^{2+} and (b) Hg^{2+} , K_{sv} calculation (c) Cu^{2+} and (d) Hg^{2+} , LOD calculation (e) Cu^{2+} and (f) Hg^{2+} depicting quenching of [3] on addition of metal ion.

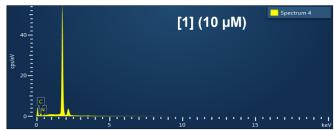


Fig. S12 (a) ¹H NMR to understand the mechanistic insights on addition of metal ions on **[2]**. (b) FT-IR spectra to understand the mechanistic insights on the addition of metal ions with **[2]**.

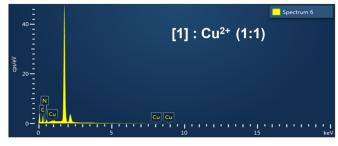
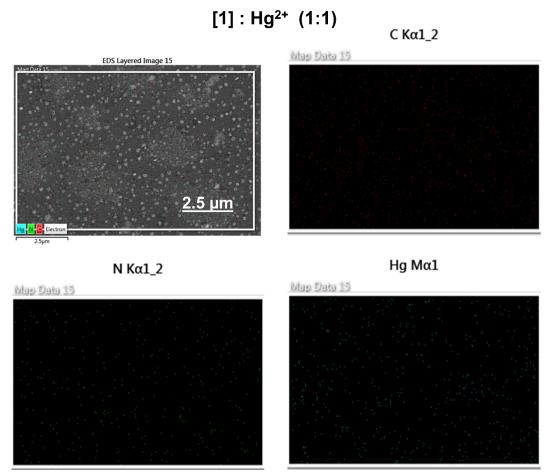


Fig. S13 ¹H NMR to understand the mechanistic insights on addition of metal ions on **[3]**. **(b)** FT-IR spectra showcasing binding of metal ion with **[3]**.

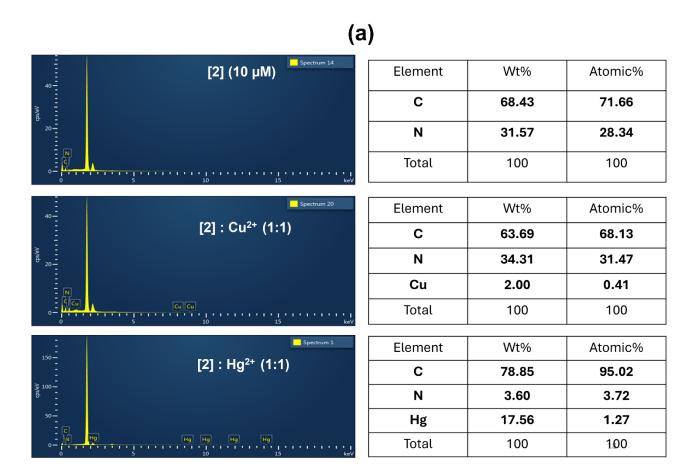
Element	Wt%	Atomic%
С	71.62	74.63
N	28.38	25.37
Total	100	100

Element	Wt%	Atomic%
С	74.96	79.50
N	21.84	19.86
Cu	3.20	0.64
Total	100	100

Element	Wt%	Atomic%
С	64.43	88.28
N	8.06	9.47
Hg	27.51	2.26
Total	100	100


(b)
[1]: Cu²⁺ (1:1)
C Kα1_2

LEDS Layered Image 13


2.5 μm

N Kα1_2

Cu Kα1

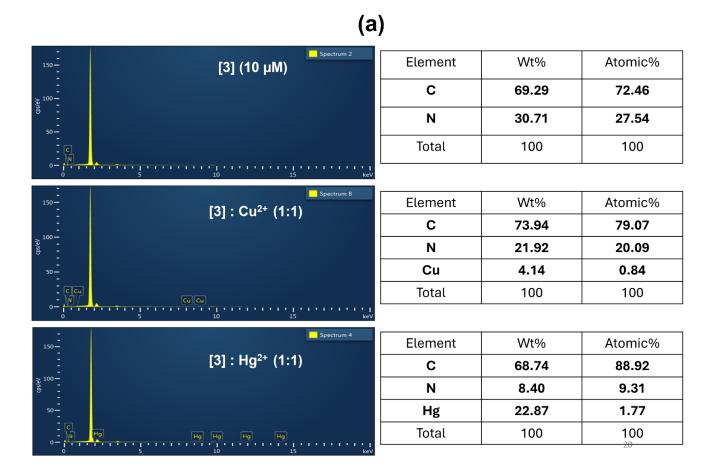


Fig. S14 (a) EDAX spectra showing change in elemental composition for **[1]** with addition of metal ion. (b) EDAX mapping depicting elemental presence for **[1]** on metal ion addition.

(b) [2] : Cu²⁺ (1:1) C Kα1_2 Map Data 6 [2] : Hg²⁺ (1:1) C Kα1_2 Map Data 3 <u>5 µm</u> $Hg\ M\alpha 1$ N Kα1_2 Map Data 3 Map Data 3

Fig. S15 (a) EDAX spectra showing change in elemental composition for [2] with addition of metal ion. (b) EDAX mapping depicting elemental presence for [2] on metal ion addition.

(b) [3] : Cu²⁺ (1:1) C Kα1_2 Map Data 4 2.5 μm N Kα1_2 Cu Ka1 Map Data 4 Map Data 4 [3]: Hg²⁺ (1:1) C Kα1_2 Map Data 2 N Kα1_2 Hg Mα1 Map Data 2 Map Data 2

Fig. S16 (a) EDAX spectra showing change in elemental composition for [3] with addition of metal ion. (b) EDAX mapping depicting elemental presence for [3] on metal ion addition.

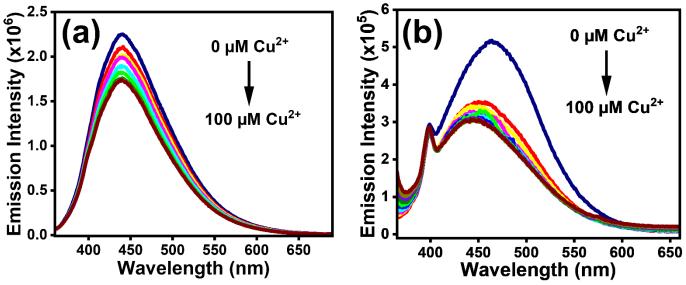


Fig. S17 Variation in emission intensity of [1] against Cu^{2+} ions with (a) pond water sample and (b) tap water sample.