Supporting Information

Efficient single-component nickel catalysts with tetradentate aminopyridine ligands for cycloaddition reactions of CO₂ and epoxides

under mild conditions

Congcong Zhang^{a‡}, Minghui Shi^{a‡}, Ning Yu^a, Bowen Zhang^{a,b*}, Feng Han^{a*}, Chengxia

Miao^{a,*}

^a Key Laboratory of Low-Carbon and Green Agriculture Chemistry in Universities of Shandong, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China.

^b Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States. [‡] These authors contributed equally.

* Corresponding authors.

E-mail: bowenzhang@sdau.edu.cn (B. Zhang), fenghan@sdau.edu.cn (F. Han), chxmiao@sdau.edu.cn (C. Miao)

Table of Contents

Crystal information of L1-NiBr ₂	S2

Part screening reaction conditions for catalytic coupling reactions between

1a and CO ₂	S4
TGA and IR spectra of L1-NiBr ₂	S5
NMR data of ligands and products	S7
Copies of ¹ H-NMR and ¹³ C-NMR spectra	S10
Computational methods	S21
The calculation formula	S22
References	S23

Name	Data
Empirical formula	C ₂₀ H ₂₈ Br ₂ N ₄ Ni
Formula weight	542.99
Space group	P 43 21 2
<i>a</i> , Å	9.1561(3)
$b, \mathrm{\AA}$	9.1561(3)
$c, \mathrm{\AA}$	23.8743(13)
α , deg	90
β , deg	90
γ, deg	90
$V, Å^3$	2001.48(17)
Ζ	4
temp, K	100.01(10)
λ (Mo K α), Å	0.71073
<i>D</i> , g cm ⁻³	1.802
Final R indices [I>2sigma(I)]	R1=0.0379, wR2=0.0662
R indices (all data)	R1=0.0443, wR2=0.0685

1. Crystal information of L1-NiBr₂

Table S1 Data collection and structure refinement for L1-NiBr₂

Bond	Distances (Å)
N1-Ni1	2.107(4)
N2-Ni1	2.158(4)
Ni1-Br1	2.5866(7)
Ni1-N1	2.107(4)
Ni1-N2	2.158(4)
Bot	nd Angles (°)
Br1-Ni1-Br1	91.68(3)
N1-Ni1-Br1	88.62(10)
N1-Ni1-Br1	96.56(10)
N1-Ni1-Br1	88.61(10)
N1-Ni1-Br1	96.55(10)
N1-Ni1-N1	172.6(2)
N1-Ni1-N2	78.52(14)
N1-Ni1-N2	78.52(14)
N1-Ni1-N2	95.84(14)
N1-Ni1-N2	95.84(14)
N2-Ni1-Br1	93.30(10)
N2-Ni1-Br1	172.90(10)
N2-Ni1-Br1	93.30(9)
N2-Ni1-Br1	172.90(10)
N2-Ni1-N2	82.20(19)

Table S2 Selected bond distances (Å) and angles (°) for L1-NiBr $_2$

2. Part screening reaction conditions for catalytic coupling reactions between 1a and CO₂

Entry	Catalyst	Solvent	Conversion (%) ^b	Yield (%) ^b	Selectivity (%) ^b
1	L1-NiBr ₂	MeCN	95	94	99
2	L1-NiBr ₂	DCE	93	91	98
3	L1-NiBr ₂	Toluene	77	74	97
4	L1-NiBr ₂	MeOH	93	58	62
5	L1-NiBr ₂	DMC	87	76	88
6	L1-NiBr ₂	DMF	95	93	99
7	L1-NiBr ₂	THF	87	80	92
8	L1-NiBr ₂	-	98	98	100

Table S3 Catalytic coupling reactions between 1a and CO₂ in different solvent^a

^{*a*} Reaction conditions: **1a** (1 mmol), solvent (2 mL), CO₂ (2.5 MPa), 80 °C, 8 h, 5 mol% **L1-NiBr**₂. ^{*b*} Gas chromatography is used to determine the conversion rate and yield of cyclic carbonates, with biphenyl as the internal standard.

Table	S4	Catalytic	coupling	reactions	between	1a	and	$\rm CO_2$	at	different	reaction
temper	atur	e ^a									

Entry	Catalyst	T (°C)	Conversion (%) ^b	Yield $(\%)^b$	Selectivity $(\%)^b$
1	L1-NiBr ₂	60	59	56	95
2	L1-NiBr ₂	70	88	88	100
3	L1-NiBr ₂	80	98	98	100
4	L1-NiBr ₂	90	98	98	100

^{*a*} Reaction conditions: **1a** (1 mmol); CO₂ (2.5 MPa); 8 h; solvent-free; 5 mol% L1-**NiBr**₂. ^{*b*} Gas chromatography is used to determine the conversion rate and yield of cyclic carbonates, with biphenyl as the internal standard.

3. TGA and IR spectra of L1-NiBr₂

Fig. S1 TGA (Thermogravimetric Analysis) of L1-NiBr2.

Fig. S2 The IR spectra of L1-NiBr₂ before and after cyclic experiments.

4. NMR data of ligands and products

L1: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.50 (dt, J = 4.9, 1.4 Hz, 2H), 7.58 (dd, J = 3.7, 1.5 Hz, 4H), 7.12 (td, J = 5.1, 3.3 Hz, 2H), 3.92 (d, J = 14.5 Hz, 2H), 3.80 (d, J = 14.6 Hz, 2H), 2.72 – 2.60 (m, 2H), 2.29 (s, 6H), 2.07 – 1.94 (m, 2H), 1.83 – 1.72 (m, 2H), 1.34 – 1.24 (m, 2H), 1.24 – 1.11 (m, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 161.4, 148.6, 136.3, 122.9, 121.6, 64.5, 60.5, 36.6, 25.84, 25.80.

L2: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.54 – 8.42 (m, 2H), 7.90 (d, J = 7.9 Hz, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.65 – 7.58 (m, 3H), 7.55 (td, J = 7.6, 1.8 Hz, 1H), 7.48 (d, J = 7.0 Hz, 2H), 7.34 (t, J = 7.6 Hz, 2H), 7.27(m, 1H), 7.24 (d, J = 7.9 Hz, 2H), 7.20 (d, J = 7.2 Hz, 1H), 7.10 (m, 2H), 5.12 (s, 1H), 4.98 (s, 1H), 2.57 (m, 1H), 2.47 (m, 1H), 2.17 (d, J = 5.0 Hz, 6H), 1.88 (m, 2H), 1.53 (s, 2H), 1.04 (t, J = 7.1 Hz, 2H), 0.78 (t, J = 10.3 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 162.9, 149.0, 148.7, 143.1, 141.2, 136.7, 136.3, 129.1, 128.5, 128.4, 128.3, 127.3, 127.0, 123.4, 122.3, 121.9, 75.2, 74.7, 60.4, 59.9, 34.5, 34.4, 25.7, 25.4, 25.1, 24.5.

L3: ¹H NMR (400 MHz, Chloroform-*d*) δ 8.57 – 8.51 (m, 6H), 7.80 (t, *J* = 7.6 Hz, 4H), 7.71 (d, *J* = 8.1 Hz, 2H), 7.64 (td, *J* = 7.7, 1.8 Hz, 2H), 7.50 – 7.41 (m, 6H), 7.09 (ddd, *J* = 7.4, 5.0, 1.1 Hz, 2H), 5.91 (s, 2H), 2.70 (d, *J* = 9.2 Hz, 2H), 2.31 (s, 3H), 2.10 (s, 6H), 1.99 (d, *J* = 12.8 Hz, 2H), 1.45 (d, *J* = 7.8 Hz, 2H), 1.12 (d, *J* = 9.2 Hz, 2H), 0.66 (t, *J* = 9.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 163.4, 148.6, 138.1, 136.4, 133.9, 131.8, 128.8, 127.5, 126.9, 126.0, 125.7, 125.3, 123.9, 123.5, 121.8, 69.2, 60.3, 35.5, 25.4, 24.6.

2a, 4-phenyl-1,3-dioxolan-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.39 (m, 3H), 7.35 (dd, J =
7.4, 2.4 Hz, 2H), 5.67 (t, J = 8.0 Hz, 1H), 4.79 (t, J = 8.4 Hz, 1H), 4.32 (t, J = 8.2 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.0, 135.9, 129.8, 129.3, 126.0, 78.1, 71.3.

2b, 4-methyl-1,3-dioxolan-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 4.97 – 4.83 (m, 1H), 4.59 (t, *J* = 8.1 Hz, 1H), 4.06 (dd, *J* = 8.5, 7.2 Hz, 1H), 1.50 (d, *J* = 6.4 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.2, 73.8, 70.7, 19.3.

2c, 4-(chloromethyl)-1,3-dioxolan-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 4.99 (dtd, J = 8.7, 5.3, 3.5 Hz, 1H), 4.58 (t, J = 8.6 Hz, 1H), 4.38 (dd, J = 8.9, 5.7 Hz, 1H), 3.80 (dd, J = 12.2,4.9 Hz, 1H), 3.71 (dd, J = 12.3, 3.6 Hz, 1H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 154.5, 74.5, 67.0, 44.1.

2d, 4-((allyloxy)methyl)-1,3-dioxolan-2-one

11.1, 3.7 Hz, 2H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 133.7, 117.9, 117.9, 75.1, 75.1, 72.6, 68.8, 66.3.

2e, 4-(butoxymethyl)-1,3-dioxolan-2-one

6.5 Hz, 2H), 1.59 – 1.48 (m, 2H), 1.34 (h, *J* = 7.4 Hz, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.1, 75.1, 71.9, 69.6, 66.3, 31.5, 19.2, 13.9.

2f, 4-(phenoxymethyl)-1,3-dioxolan-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 – 7.25 (m, 2H), 7.06 – 6.96 (m, 1H), 6.95 – 6.86 (m, 2H), 5.01 (ddt, *J* = 8.2, 5.9, 3.7 Hz, 1H), 4.59 (t, *J* = 8.4 Hz, 1H), 4.51 (dd, *J* = 8.6, 5.9 Hz, 1H), 4.22 (dd, *J* = 10.7, 3.9 Hz, 1H), 4.12 (dd, *J* = 10.6, 3.6 Hz, 1H). ¹³C

NMR (101 MHz, Chloroform-*d*) δ 157.8, 154.8, 129.7, 122.0, 114.6, 74.3, 66.9, 66.3. 2g, 4-hexyl-1,3-dioxolan-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 4.69 (qd, J = 7.5, 5.4 Hz,
1H), 4.56 – 4.43 (m, 1H), 4.05 (dd, J = 8.4, 7.2 Hz, 1H), 1.79 (dddd,
J = 12.8, 9.7, 7.6, 5.2 Hz, 1H), 1.73 – 1.60 (m, 1H), 1.45 (dd, J =

11.1, 6.2 Hz, 1H), 1.35 (ddd, J = 18.1, 8.8, 4.3 Hz, 3H), 1.28 (dt, J = 7.7, 4.4 Hz, 4H), 0.91 – 0.82 (m, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 155.2, 77.1, 69.4, 33.9, 31.5, 28.8, 24.3, 22.45, 14.0.

2h, hexahydrobenzo[d][1,3]dioxol-2-one

¹H NMR (400 MHz, Chloroform-*d*) δ 4.72 (t, J = 4.2 Hz, 2H), 1.91 (dq, J = 9.3, 4.9 Hz, 4H), 1.61 (dt, J = 14.6, 6.2 Hz, 2H), 1.44 (dq, J = 8.5, 5.4, 3.8 Hz, 2H).
¹³C NMR (101 MHz, Chloroform-*d*) δ 155.5, 75.9, 26.8, 19.2.

5. Copies of ¹H-NMR and ¹³C-NMR spectra

Fig. S3 ¹H NMR spectrum of L1

Fig. S4 ¹³C NMR spectrum of L1

Fig. S5 ¹H NMR spectrum of L2

Fig. S6 ¹³C NMR spectrum of L2

Fig. S7 ¹H NMR spectrum of L3

Fig. S8 ¹³C NMR spectrum of L3

Fig. S10 ¹³C NMR spectrum of 2a

Fig. S11 ¹H NMR spectrum of 2b

Fig. S12 ¹³C NMR spectrum of 2b

Fig. S14 ¹³C NMR spectrum of 2c

Fig. S16 ¹³C NMR spectrum of 2d

Fig. S18 ¹³C NMR spectrum of 2e

Fig. S20 ¹³C NMR spectrum of 2f

Fig. S22 ¹³C NMR spectrum of 2g

Fig. S24 ¹³C NMR spectrum of 2h

6. Computational methods

Geometric optimizations and frequency calculations were performed with Gaussian 16 C01.^[S1] TPSSh functional^[S2] was used. The def2-TZVP basis sets were used for the Co and Br atoms, and the def2-SVP basis sets were used for the other atoms.^[S3-S5] Grimme's dispersion correction^[S4] with Becke-Johnson damping^[S6] was applied. Grimme's quasi-harmonic approximation was applied to correct the entropy contribution from low-frequency vibrational modes by A single-point energy on the optimized gas phase geometry was calculated with the Model based on Density (SMD).^[S7-S8] Since the epoxides were not parametrized in the SMD implementation of Gaussian 16, 1-hexanol was selected as the continuum due to its similar elemental composition and dielectric constant (ethylene oxide: 12.7 at 298.15 K;^[S9] 1-hexanol: 12.51, from the Gaussian 16 SCRF definition). The electronic energies were further corrected with a single-point gas phase calculation at the PWPB95-D4^[S10-S11]/def2-TZVPP level using ORCA 5.0.4.^[S12] Resolution of identity (RI) approximation was applied to accelerate the computation, and the def2-TZVPP/C auxiliary basis sets^[S13] were used. A -1.89 kcal/mol molar correction on the Gibbs free energy was applied to each solvated species.

7. The calculation formula

Conversion = $[1 - (\text{molar mass of unreacted } 1/\text{all added molar mass of } 1)]*100\%$	(1)
Yield = (molar mass of produced 2 /theoretical molar mass of produced 2)*100%	(2)
Selectivity = Yield/Conversion*100%	(3)
TON = molar mass of produced 2 /molar mass of catalyst L1-NiBr ₂	(4)
In formula (2) "theoretical molar mass of produced 2 " = "all added molar mass of	1".

8. References

[S1] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr. J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, D. J. Fox, *Gaussian, Inc. Wallingford CT.*, 2016.

[S2] V. N. Staroverov, G. E. Scuseria, J. Tao, J. P. Perdew, J. Chem. Phys., 2003, 119, 12129–12137.

- [S3] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297-3305;
- [S4] F. Weigend, Phys. Chem. Chem. Phys, 2006, 8, 1057–1065.
- [S5] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys., 2010, 132, 154104.
- [S6] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456–1465.
- [S7] S. Grimme, J. Chem. Eur., 2012, 18, 9955–9964;
- [S8] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem., 2009, **113**, 6378–6396.
- [S9] S. Kozuch, J. M. Martin, J. Comput. Chem., 2013, 34, 2327-2344.
- [S10] D. W. Davidson, G. J. Wilson, Can. J. Chem., 1963, 41, 1424–1434;
- [S11] E. Caldeweyher, C. Bannwarth, S. Grimme, J. Chem. Phys., 2017, 147, 034112.
- [S12] F. Neese, F. Wennmohs, U. Becker, C. Riplinger, J. Chem. Phys., 2020, 152, 224108.
- [S13] A. Hellweg, C. Hättig, S. Höfener, W. Klopper, Theor. Chem. Acc., 2007, 117,

587-597.