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Elevated levels of atmospheric CO2 are the primary driver of global warming. Historically, 

atmospheric CO2 concentration fluctuated within a range of 235 ± ∼50 ppm over the past several 

hundred thousand years, until 1850. Currently, it stands at 426 ppm and continues to increase 

annually, leading to widespread climate disturbances, habitat degradation, and species 

extinction.1-4 The inherent chemical stability of CO2 poses a significant challenge to its removal 

by conversion into a non-greenhouse material, a subject explored in our US NSF workshop on 

Chemical Recycling and Utilization of CO2.5 However, overcoming this stability of CO2 and 

utilizing it as a carbon-negative precursor for the production of valuable products provides an 

incentive for the reduction of this greenhouse gas. 

Greenhouse gas removal from the atmosphere is necessary to achieve net-zero emissions 

and limit climate change.6,7 Today’s chemical Direct Air Capture (DAC) decarbonization 

technologies7-11 require an active CO2 concentration system, often on sorbents such as solvent 

phase or membrane fixed amine binding12-18 or based on aqueous phase or solid powder lime 

reactions.19-24 The processes involved are energy-intensive and have a significant carbon 

footprint, and they represent just the initial step in Carbon Capture and Storage (CCS) or Carbon 

Capture, Utilization, and Storage (CCUS) since they focus on concentrating carbon dioxide 

rather than storing it. In contrast, this demonstration presents an efficient chemical Direct Air 

Capture (DAC) process that eliminates the need for active CO2 concentration.

Carbon nanotubes (CNTs) possess the highest tensile strength ever recorded (93,900 

MPa)25,26 and feature excellent thermal conductivity, high charge storage, flexibility, and 

catalytic properties. As described in the SI, they enhance structural materials like cement and 

steel,27 and are used in medical28 and electrochemical applications,29 electronics, batteries, and 
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supercapacitors30,31 and are used for sensing,32-34 plastics,35-39 textiles,40 hydrogen storage,41 and 

water treatment.42,43 

The high-temperature molten carbonate electrolytic splitting of CO2 into carbon and 

oxygen as a GHG mitigation strategy was introduced in 2009-2010.44,45  In 2015, it was shown 

that the growth of transition metal nuclei during molten carbonate electrolysis process leads 

directly to the conversion of CO2 into readily sequestered, stable, pure graphene nanocarbons, 

including carbon nanofibers and CNTs. 46-51  Graphite is an analogous macroscopic form of 

layered graphene, and as a mineral graphite has an established geologic (hundreds of millions of 

years) lifetime. The type of GNC produced depends on the electrochemical conditions and 

delineated in the SI.46,52 This method transforms CO2 into valuable graphene-stabilized carbon 

products, offering a promising climate change mitigation approach. The CCUS molten carbonate 

electrolysis process for GNC production has evolved into a sophisticated technology  now 

protected by numerous patents.53 By adjusting CO2 electrolysis conditions, specific GNCs can be 

produced—carbon nano-onions at high oxide conditions around 725°C and CNTs at 750-

770°C.46,55-62

Research has also explored alternatives, such as sodium carbonate mixtures and lower 

electrolysis temperatures, which can produce 3D symmetry graphene scaffolds.63 Electrolysis 

current densities from 0.03 to 0.6 A cm⁻² affect GNC growth, with higher densities favouring 

helical CNTs.64-65 The energy required ranges from 0.8 to 2 volts, and using renewable energy 

can further reduce the carbon footprint.66-72 Various GNC allotropes, including carbon nano-

bamboo and carbon nano-pearl, can be produced by adjusting electrode and electrolyte 

conditions.73-74 GNCs form directly on the cathode and are separated from the molten electrolyte 

through high-temperature filtration.75,76

The CO2 to nanocarbon process, including electrolyte separation and return to the 

electrolysis chamber, and extraction of the pure GNC product is illustrated Figure S1. As 

illustrated in Figure 1, during electrolysis CO2 either sourced directly from the air or industrial 

emissions are transformed to GNCs by electrolysis in molten carbonates. The CO2 is split into C 

and O2 with a GNC-electrolyte matrix growing at the electrolysis cathode. This 
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nanocarbon/carbonate electrolyte mix has been termed a carbanogel and is refined through the 

separation of the electrolyte.

1 Figure S1. The CO2 to graphene nanocarbon process. CO2 sourced either from an anthropogenic 
source (CCUS) or from the air (DAC), panels A and B, is directly transformed into graphene 
nanocarbons, panel F. The morphology of the graphene nanocarbon is determined by tuning the 
electrochemical conditions of the molten carbonate CO2 electrolysis, panel C. The nanocarbon 

product (carbon nanotube exemplified) is separated from the molten electrolyte by a high-
pressure, high-temperature extraction press, panel D, and has carbon nanotube morphology, as 
indicated by SEM panel F and in panel E by TGA resistance to high-temperature oxidation as 
characterized. With parts modified with copyright permission from X. Wang, G. Licht and S. Licht, 
Green and scalable separation and purification of carbon materials in molten salt by efficient high-
temperature press filtration, Sep. Purif. Technol., 2021, 244 117719, DOI: 
10.1016/j.seppur.2020.117719.

.
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        The high electrical conductivity character of the graphene nano-allotropes supports 

continuous growth during the CO2 molten electrolysis at low electrolysis voltage. This cathode 

product grows as an interconnected matrix with electrolyte in the matrix pores. This matrix 

containing carbonate electrolyte has been termed a carbanogel. Some of the electrolyte in this 

matrix is rather loosely bound. For example, a post-electrolysis cathode lifted out of the molten 

electrolyte can release over 30% of the bound electrolyte by gravitational drip. 

Figure S2 illustrates larger vertical presses that have been scaled up, which include the 

transfer of applied pressure to the pressing chamber using a hydraulic ram, as described 

previously.76 In Figure S2A, there's a cross-sectional depiction of an intermediate scaled-up 

carbanogel electrolyte extraction unit, detailing the plunger, filter screen platform, and 

electrolyte exit chamber.76 Figure S2B shows a larger carbanogel electrolyte extraction unit in 

operation, capable of pressing up to 0.25 tonnes of carbanogel. Presses in the unit with 50 kg 

carbanogel have already achieved over 99% electrolyte extraction efficiency. 
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Figure S2. Scaled-up carbanogel electrolyte extraction units. A) Cross-sectional illustration of a mid-
scaled extraction unit illustrating the plunger, the filter screen platform and the electrolyte exit chamber. 
B) Larger scaled carbanogel electrolyte extraction unit in action. From open access paper Licht, K. 
Hofstetter, S. Licht, Separation of molten electrolyte from the graphene nanocarbon product subsequent 
to electrolytic CO2 capture. Decarbon 4 (2024) 100044. https://doi.org/10.1016/j.decarb.2024.100044.

    Control of the electrode and electrolyte composition, and CO2 electrolysis splitting 

temperature  and current density tunes the decarbonization process to form a range of high purity 

graphene nanocarbon products, including carbon nanotubes. Typical SEM, TEM and HAADF 

(High Angle Annular Dark-Field TEM) elemental analysis imaging of the CNTs are presented in 

Figure S3,59 and of the carbon nano-onions in S4, and have been extensively detailed.54

Control of the CO2 electrolysis conditions is used to tune the specific GNC generated by 

control of the temperature, current density, and the composition of the electrolyte.59.74 For 

example, a lower temperature (725°C) is typically used in the electrolytic growth of carbon 

nano-onions, while higher temperature (750 to 770°C) is used in the electrolytic growth of 

carbon nanotubes. Lithium carbonate, a typical electrolyte, has a melting point of 723°C. Binary 

lithium carbonate mixtures have a lower melting point. A high sodium carbonate content in a 

mixed sodium/lithium carbonate electrolyte and a lower electrolysis temperature (670°C) drive 

the formation of a graphene scaffold nanocarbon product formation. Applied electrolysis current 

densities generally range from 0.03 to 0.6 A cm-2. High current density (0.6 A cm-2 or over) is 
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one of the principal conditions driving the formation of fascinating helical, rather than straight, 

carbon nanotubes.

Electrode (and electrolyte additive) composition variation has been used to grow other 

GNC allotropes from CO2. These include carbon nanobamboo, carbon nanopearl, graphene from 

nanocarbon platelets, carbon nanofiber, carbon nanobelt, carbon nanotree, and other specific 

carbon allotrope morphologies. SEM of a range of these GNC products is presented in Fig. S5, 

and XRD and Raman spectra of the products are presented in Figs. S6 and S7 as previously 

detailed.74 The solid graphene nanocarbon product from CO2 grows as a matrix directly on the 

cathode. Under constant current electrolysis conditions, the product formation is continuous, and 

the growth occurs in the direction towards the anode. 
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Figure S3. SEM TEM and HAADF of the synthesis product of high purity, high yield carbon nanotubes 
by electrolytic splitting of CO2 in 770°C Li2CO3. The SEM has a scale bar of 5 µm. Panels B are TEM 
with scale bars decreasing from 100, 20, 5 and 1 nm. Bottom rows panels C are HAADF elemental 
analyses  with scale bars decreasing from 100 to 50  nm, and in the bottom right a HAADF elemental 
carbon profile analysis of the carbon nanotube cross section. Modified from open access paper X. Liu, 
G. Licht, S. Licht, Controlled Transition Metal Nucleated Growth of Carbon Nanotubes by 
Molten Electrolysis of CO2 Catalysts 12 (2022) 137.  https://doi.org/10.3390/catal12020137.
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Figure S4. Top: SEM comparison of the graphene nanocarbon synthesized as a function of electrolysis 
duration without added nickel (compared to Fig. 3 with added nickel) in a 770°C Li2CO3 containing 5.9 m 
Li2O. When nickel is not added, the initial spheroid product that is evident becomes a distinct carbon nano-
onion morphology. Each product contains a high yield of uniform pure carbon spheroids. Bottom: TEM of 
CNOs obtained with 30 minutes of molten carbon carbonate electrolysis and delineating the concentric 
graphene sphere morphology of the CNOs..
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Figure S5. SEM of nanocarbon allotropes synthesized by the electrolytic splitting of CO2 in molten 
carbonate. Top row (from A to F) conical CNF, nano-bamboo, nano-pearl, Ni coated CNT, nano-flower, 
nano-dragon. Middle row (from G to K): nano-rod, nano-belt, nano-onion, hollow nano-onion, and nano-
tree. Bottom row (from L to Q) Carbon nanotube, nano-scaffold (ref. 50), nano-platelet, graphene, nano-
helices. Modified from open access paper X. Liu, G. Licht, X. Wang, S. Licht, Controlled Growth of 
Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts 12 (2022) 137. 
https://doi.org/10.3390/catal12020125.
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Figure S6 XRD of the synthesis product consisting of various labeled unusual nanocarbon morphologies 
synthesized by the electrolytic splitting of CO2 in 770°C Li2CO3 with a variety of systematically varied 
electrochemical conditions. Modified from open access paper X. Liu, G. Licht, X. Wang, S. Licht, 
Controlled Growth of Unusual Nanocarbon Allotropes by Molten Electrolysis of CO2. Catalysts 12 (2022) 
137. https://doi.org/10.3390/catal12020125.
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