## **Supplementary Information**

# Green and Efficient One-Pot Synthesis of the Bio-Based Platform Molecule 4 Hydroxymethyl-2-Furfural on Multigram Scale

Kubilay Ceyhan, Mattis Rottmann, Harald Gröger\*

Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Bielefeld

University, Universitätsstraße 25, 33615 Bielefeld, Germany

\*To whom correspondence should be addressed

## Table of content

| Determination of the E-factor during the multigram synthesis of 4-HMF 4                                   |
|-----------------------------------------------------------------------------------------------------------|
| Determination of energy consumption for the dendroketose preparation7                                     |
| Determination of energy consumption for the multigram synthesis of 4-HMF9                                 |
| Determination of energy consumption for a hypothetic scale up of 4-HMF production                         |
| NMR spectrum of dendroketose                                                                              |
| Quantification of dendroketose via <sup>1</sup> H-NMR analysis13                                          |
| Figure S 2. A) <sup>1</sup> H-NMR Spectrum for the dendroketose calibration presented for the datapoint   |
| representing 100g/L dendroketose. B) dendroketose calibration line for the quantification of the sugar in |
| aqueous solution. The quantification method has an error of $\pm$ 5%                                      |
| Screening of Lewis-Acids and Bronsted Acids for the dendroketose dehydration reaction in                  |
| NaCl/H <sub>2</sub> O 15                                                                                  |
| Table S 2. Screening of Metal-triflates for the dehydration reaction of dendroketose to 4-HMF             |
| Table S 3. Screening of Bronsted acids for the dehydration reaction of dendroketose to 4-HMF.       17    |
| Table S 4. Screening of biphasic reaction medium conditions for the efficient synthesis of 4-HMF 18       |
| Screening of dendroketose loading 19                                                                      |
| Figure S 3. Screening of dendroketose loading for the efficient dehydration reaction to 4-HMF. A) 4-      |
| HMF yield at dendroketose loadings between 10g/L to 500 g/L, B) HMF yield* HMF Selectivity at             |
| Dendroketose loadings between 10g/L to 500 g/L, C) Dendroketose in solution for Dendroketose loadings     |
| between 10g/L to 500 g/L 20                                                                               |
| Screening of heterogeneous acid catalyst                                                                  |

| Figure S 4. Screening of heterogeneous acid catalysts for the dendroketose dehydration reaction to 4- |    |
|-------------------------------------------------------------------------------------------------------|----|
| HMF                                                                                                   | 21 |
| Recycling studies of heterogeneous acid catalyst                                                      | 22 |
| Figure S 5. Recycling of Amb15 beads for dehydration reaction of dendroketose to produce 4-HMF        | 22 |
| Figure S 6. Recycling of Amb15 beads for dehydration reaction of dendroketose to produce 4-HMF.       |    |
| Control experiment                                                                                    | 23 |
| Control experiment for the HCl catalyzed dendroketose dehydration                                     | 24 |

### Determination of the E-factor during the multigram synthesis of 4-HMF.

| Reaction Cycle | Input                        | Output                                    |
|----------------|------------------------------|-------------------------------------------|
| 0              | 100g dihydroxyaceton         | not isolated                              |
|                | 11ml NaOH (1M)               |                                           |
|                | 89ml D.I. Water              |                                           |
|                | 2ml HCl (1M, neutralization) |                                           |
|                | 1000 ml MTHF (solvent        |                                           |
|                | reservoir)                   |                                           |
| 1              | 236.4g HCl (1M)              | 7.1g 4-HMF (determined by <sup>1</sup> H- |
|                | 600 ml H <sub>2</sub> O      | NMR)                                      |
|                | 120g NaCl                    |                                           |
|                | 750 ml MTHF (3x250 ml for    |                                           |
|                | extraction, closed loop      |                                           |
|                | distillation)                |                                           |
| 2              | 11.4g dendroketose           | 8.6g 4-HMF (determined by <sup>1</sup> H- |
|                | 750 ml MTHF (3x250 ml for    | NMR)                                      |
|                | extraction, closed loop      |                                           |
|                | distillation)                |                                           |
|                |                              |                                           |

**Table S 1.** Substance inputs and outputs during the 100g scale synthesis of 4-HMF.

| 3 | 12.4g dendroketose             | 8.6g 4-HMF (determined by <sup>1</sup> H- |
|---|--------------------------------|-------------------------------------------|
|   | 7501 MTHE (2-2501 6            | NMR)                                      |
|   | 750  m MTHF (3x250 m) for      |                                           |
|   | extraction, closed loop        |                                           |
|   | distillation)                  |                                           |
|   |                                |                                           |
| 4 | 14.2g dendroketose             | 6.3g 4-HMF (determined by <sup>1</sup> H- |
|   | 750 ml MTHF (3x250 ml for      | NMR)                                      |
|   | extraction, closed loop        |                                           |
|   | distillation)                  |                                           |
|   |                                |                                           |
| 5 | 10.2g dendroketose             | 8.6g 4-HMF (determined by <sup>1</sup> H- |
|   | 750 1 MTHE (2 250 1 C          | NMR)                                      |
|   | 750  ml M I HF (3x250  ml for) |                                           |
|   | extraction, closed loop        |                                           |
|   | distillation)                  |                                           |
|   |                                |                                           |
| 6 | 12.0g dendroketose             | 6.8g 4-HMF (determined by <sup>1</sup> H- |
|   | 750 ml MTHF (3x250 ml for      | NMR)                                      |
|   | extraction, closed loop        |                                           |
|   | distillation)                  |                                           |
|   |                                |                                           |
| 7 | 13.7g dendroketose             | 8.6g 4-HMF (determined by <sup>1</sup> H- |
|   | 7501 MTELE (2. 250             | NMR)                                      |
|   | /50 ml M1HF (3x250 ml for      |                                           |
|   | extraction, closed loop        |                                           |
|   | distillation)                  |                                           |
|   |                                |                                           |

| 8 | 11.0g dendroketose        | 6.9g 4-HMF (determined by <sup>1</sup> H- |
|---|---------------------------|-------------------------------------------|
|   |                           | NMR)                                      |
| 9 | 750 ml MTHF (3x250 ml for | 5.7g 4-HMF (determined by <sup>1</sup> H- |
|   | extraction, closed loop   | NMR)                                      |
|   | distillation)             |                                           |
|   |                           |                                           |

 $m_{in (total dendroketose Input for dehydration)} = 109g$ 

 $m_{in (total amount of NaCl/H2O/HCl)} = 938.4 \text{ g}$ 

 $m_{out}$  (4-HMF determined by <sup>1</sup>H-NMR analysis) = 67.2g (88.1%)

 $m_{out}$  (4-HMF determined by balance) = 57.5g (75.5%)

 $m_{out (solid Humin)} = 13.7g$ 

 $m_{out (Water after the 9th cycle)} = 1026.2g (+87.8g relative to the input)$ 

 $m_{out (MTHF after distillation)} = 826g (971ml) \rightarrow Loss of 24.65g (may be dissolved in Water)$ 

In principle, the reaction water is no waste, since it can be used for several reaction cycles as demonstrated in this work for 9 reaction cycles. After the dendroketose concentration is readjusted to 100g/L the next reaction cycle can begin. Under this condition, the E-Factor for this process is determined to be:

E-factor = (13.7g +24.65g) / 57.5 = **0.67** 

Determination of energy consumption for the dendroketose preparation.

Total power of the used vacuum pump (vacuumbrand®, RZ 6, S/N: 34810211) = 0.18 kW

Total power of the used heating device (IKA® RCT basic 100091497) = 0.65kW (approximation: 0.1kW to heat up and hold target temperature for the whole use time)

Heat capacity of water = 4.2 kJ/(kg\*°C)

**Distillation temperature** = 40°C

**Distillation time** = 2h

#### **Equations used:**

To calculate the energy amount to heat up the solvent:

(1)  $Q = cp [J/(kg^{*}C)] * m[kg] * \Delta T [^{\circ}C]$  and with 1kJ = 0.000278 kWh

To calculate the energy amount for pump and heating device:

(2) Energy = power [kW] \* time [h]

#### Calculation.

Solvent heating for distillation:  $Q = 4.2 [kJ/(kg^* \circ C)]^* 0.1 kg * 15^\circ C = 6.3 kJ \approx 0.002 kWh$ 

**Heating device for distillation:** Energy = 0.1 kWh \* 2h = 0.2 kWh = 0.68 kWh

**Energy for pump:** Energy = 0.18kWh \* 2h = 0.36 kWh

**Total energy consumption** = (0.002 + 0.68 + 0.36) kWh = **1.04** kWh

Energy cost in Germany (2023) = 0.181 EUR/kWh

#### **CO2 production per generated kWh in Germany (2023)** = 360 g/kWh

With these values we calculate for the production of 100g dendroketose:

**Energy cost** = 1.04kWh \* 0.181 EUR/kWh = 0.188 EUR

**CO<sub>2</sub> production** = 1.04kWh \* 360 g/kWh = 374.4 g

#### Determination of energy consumption for the multigram synthesis of 4-HMF.

Total power of the used vacuum pump (vacuumbrand®, RZ 6, S/N: 34810211) = 0.18 kW

Total power of the used heating device (IKA® RCT basic 100091497) = 0.65kW (approximation: 0.1kW to heat up and hold target temperature for the whole use time)

**Cycle 1:** Heating from 25°C to 80°C  $\rightarrow \Delta T = 55$ °C

**Cycle 2-9:** Heating from 60°C to 80°C  $\rightarrow \Delta T = 20$ °C

**Synthesis temperature** = 80°C

**Synthesis time** = 2h

Heat capacity of sat. NaCl solution = 2.97 kJ/(kg\*°C)

#### **Equations used:**

To calculate the energy amount to heat up the solvent:

(3)  $Q = cp [J/(kg^{*\circ}C)] * m[kg] * \Delta T [^{\circ}C]$  and with 1kJ = 0.000278 kWh

To calculate the Energy amount for pump and heating device:

(4) Energy = power [kW] \* time [h]

#### Calculation.

Solvent heating:  $Q = 2.97 [kJ/(kg^{*\circ}C)]^* 1 kg * 55^{\circ}C = 163.35 kJ \approx 0.05 kWh (cycle 1)$ Solvent heating:  $Q = 2.97 [kJ/(kg^{*\circ}C)]^* 1 kg * 20^{\circ}C = 59.40 kJ * 8 cycles \approx 0.13 kWh$ Heating device during synthesis: Energy = 0.1kW \* 2h = 0.2 kWh \* 9 cycles = 1.8 kWhHeating device for distillation: Energy = 0.1 kWh \* 0.25h = 0.025kWh \* 9 cycles \* 3 timesextraction per cycle = 0.68 kWh

**Energy for pump:** Energy = 0.18kWh \* 0.25h = 0.045kWh \* 9 cycles \* 3 times extraction per cycle = 1.22 kWh

Total energy consumption = (0.05 + 0.13 + 1.80 + 0.68 + 1.22) kWh = 3.88 kWh

3.88 kWh is needed for 58g of 4-HMF. We extrapolate this value for the production of 1kg 4-HMF to be (3.88 kWh \* 1000 g)/58g = 66.90 kWh

**Energy cost in Germany (2023)** = 0.181 EUR/kWh

#### **CO2 production per generated kWh in Germany (2023)** = 360 g/kWh

With these values we calculate to produce 1kg 4-HMF:

**Energy cost** = 66.90kWh \* 0.181 EUR/kWh = 12.1 EUR

**CO<sub>2</sub> production** = 66.90kWh \* 360 g/kWh = 24.1 kg

Determination of energy consumption for a hypothetic scale up of 4-HMF production.

Total power of the used vacuum pump (vacuumbrand®, RZ 6, S/N: 34810211) = 0.18 kW

Total power of the used heating device (IKA® RCT basic 100091497) = 0.65kW (approximation: 0.1kW to heat up and hold target temperature for the whole use time)

**Cycle 1:** Heating from 25°C to 80°C  $\rightarrow \Delta T = 55$ °C

**Synthesis temperature** = 80°C

**Synthesis time** = 2h

Heat capacity of sat. NaCl solution = 2.97 kJ/(kg\*°C)

Solvent Volume (NaCl/H<sub>2</sub>O) = 125L

#### **Equations used:**

To calculate the energy amount to heat up the solvent:

(1)  $Q = cp [J/(kg^{*\circ}C)] * m[kg] * \Delta T [^{\circ}C]$  and with 1kJ = 0.000278 kWh

To calculate the Energy amount for pump and heating device:

(2) Energy = power [kW] \* time [h]

Calculation.

Solvent heating:  $Q = 2.97 [kJ/(kg^{\circ}C)]^* 125 kg * 55^{\circ}C = 20.419 kJ \approx 5.67 kWh (cycle 1)$ 

Heating device during synthesis: Energy = 0.1kW \* 2h = 0.2 kWh = 1.8 kWh

Heating device for distillation: Energy = 0.1 kWh \* 2h = 0.2 kWh \* 3 times extraction per cycle = 0.6 kWh

**Energy for pump:** Energy = 0.18kW \* 1h = 0.18kWh \* 3 times extraction per cycle = 0.54 kWh

Total energy consumption = (5.67 + 1.8 + 0.6 + 0.54) kWh = 8.61 kWh

Energy cost in Germany (2023) = 0.181 EUR/kWh

**CO2 production per generated kWh in Germany (2023)** = 360 g/kWh

With these values we calculate to produce 1kg 4-HMF at a 125L synthesis scale:

**Energy cost** = 8.61kWh \* 0.181 EUR/kWh = 1.56 EUR

**CO<sub>2</sub> production** = 8.61kWh \* 360 g/kWh = 3.1 kg

#### NMR spectrum of dendroketose.



### Quantification of dendroketose via <sup>1</sup>H-NMR analysis

The dendroketose was quantified by using a previously performed calibration line. Aliquot amounts of dendroketose were measured with a fixed and defined amount of potassium formate between 15g/L dendroketose to 180g/L dendroketose concentration in D<sub>2</sub>O as solvent. The x-axis represents the set dendroketose concentration, while the y-axis represents the Area-Ratio (A = Area) between the dendroketose <sup>1</sup>H-NMR signals between 4.07-3.39 ppm and the KFo <sup>1</sup>H-NMR signal at 8.37 ppm.



Figure S 2. A) <sup>1</sup>H-NMR Spectrum for the dendroketose calibration presented for the datapoint representing 100g/L dendroketose. B) dendroketose calibration line for the quantification of the sugar in aqueous solution. The quantification method has an error of  $\pm$  5%.

# Screening of Lewis-Acids and Brønsted-Acids for the dendroketose dehydration reaction in NaCl/H2O

100mg dendroketose and 1mol%, 2.5mol%, 5mol%, 7.5mol%, and 10mol% Metal-triflates were weight into a 2ml Eppendorf tube. 1 ml of saturated NaCl/H<sub>2</sub>O solution was added into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 2h. After cooling down to room temperature, aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.

| <b>Metal-Triflates</b> | Concentration / mol% | <sup>1</sup> H-NMR Yield of 4-HMF / % |
|------------------------|----------------------|---------------------------------------|
|                        | 1                    | 0,9                                   |
|                        | 2,5                  | 4,7                                   |
| Hf                     | 5                    | 14,1                                  |
|                        | 7,5                  | 22,6                                  |
|                        | 10                   | 21,7                                  |
|                        | 1                    | 0,0                                   |
|                        | 2,5                  | 0,0                                   |
| Sc                     | 5                    | 2,8                                   |
|                        | 7,5                  | 3,8                                   |
|                        | 10                   | 4,7                                   |
|                        |                      |                                       |

Table S 2. Screening of Metal-triflates for the dehydration reaction of dendroketose to 4-HMF.

|    | 1         | 0,0                  |
|----|-----------|----------------------|
|    | 2,5       | 0,0                  |
| Bi | 5         | 0,0                  |
|    | 7,5       | 0,0                  |
|    | 10        | 3,8                  |
| Cu | 1-10 mol% | No reaction to 4-HMF |
| Mn | 1-10 mol% | No reaction to 4-HMF |
| Zr | 1-10 mol% | No reaction to 4-HMF |
| Al | 1-10 mol% | No reaction to 4-HMF |
| Ag | 1-10 mol% | No reaction to 4-HMF |
| Dy | 1-10 mol% | No reaction to 4-HMF |
| Yb | 1-10 mol% | No reaction to 4-HMF |
|    |           |                      |

100mg dendroketose and 1ml of Sulfuric acid, or trifluormethylsulfonic acid solutions with target concentration prepared in saturated NaCl/H2O were placed into a 2ml Eppendorf tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 2h. After cooling down to room temperature, aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.

| <b>Bronsted-Acid</b> | Concentration / mol/L | <sup>1</sup> H-NMR Yield of 4-HMF / % |
|----------------------|-----------------------|---------------------------------------|
|                      | 0,05                  | 17,0                                  |
|                      | 0,125                 | 26,4                                  |
| $H_2SO_4$            | 0,25                  | 33,9                                  |
|                      | 0,375                 | 54,7                                  |
|                      | 0,5                   | 62,2                                  |
|                      | 0,1                   | 0,0                                   |
|                      | 0,25                  | 8,5                                   |
| TFMS                 | 0,5                   | 0,0                                   |
|                      | 0,75                  | 39,6                                  |
|                      | 1                     | 36,8                                  |
|                      |                       |                                       |

Table S 3. Screening of Bronsted acids for the dehydration reaction of dendroketose to 4-HMF.

100mg dendroketose and 10mg to 100mg Amberlyst 15 were placed into a 2ml Eppendorf tube. 1ml of MTHF, MIBK, MEK, or THF were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 2h. After cooling down to room temperature, aliquots of the reaction mixture were diluted in CDCl<sub>3</sub> and the amount of 4-HMF was quantified via <sup>1</sup>H-NMR using trimethoxybenzene as the internal standard.

| <b>Biphasic System</b>  | <b>Resin-Loading/ g/L</b> | <sup>1</sup> H-NMR Yield of 4-HMF / % |
|-------------------------|---------------------------|---------------------------------------|
|                         | 10                        | 1,8                                   |
|                         | 25                        | 14,7                                  |
| Amb15/dendroketose/MTHF | 50                        | 25,8                                  |
|                         | 75                        | 31,3                                  |
|                         | 100                       | 30,4                                  |
|                         | 10                        | 0,0                                   |
|                         | 25                        | 9,2                                   |
| Amb15/dendroketose/MIBK | 50                        | 21,2                                  |
|                         | 75                        | 23,0                                  |
|                         | 100                       | 26,7                                  |
| Amb15/dendroketose/MEK  | 100                       | 23,9                                  |
| Amb15/dendroketose/THF  | 100                       | 6,4                                   |

### Table S 4. Screening of biphasic reaction medium conditions for the efficient synthesis of 4-HMF

#### Screening of dendroketose loading

10 mg to 500 mg dendroketose and 50mg Amberlyst 15 were placed into a 2ml Eppendorf tube. 1ml of sat. NaCl/H<sub>2</sub>O were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 95°C for 420h. Aliquots of the reaction mixture were diluted in  $D_2O$  and the amount of 4-HMF and dendroketose was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.





B)



**Figure S 3.** Screening of dendroketose loading for the efficient dehydration reaction to 4-HMF. A) 4-HMF yield at dendroketose loadings between 10g/L to 500 g/L, B) HMF yield\* HMF

Selectivity at dendroketose loadings between 10g/L to 500 g/L, C) Dendroketose in solution for dendroketose loadings between 10g/L to 500 g/L

#### Screening of heterogeneous acid catalyst.

100 mg dendroketose and 100 mg of Dowex50, Amberlyst15, Amberlyst16, Fulcat22F, Fulcat22B were placed into a 2ml Eppendorf tube. 1ml of sat. NaCl/H<sub>2</sub>O were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 120h. Aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF and dendroketose was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.



**Figure S 4.** Screening of heterogeneous acid catalysts for the dendroketose dehydration reaction to 4-HMF.

#### **Recycling studies of heterogeneous acid catalyst**

100 mg dendroketose and 100 mg Amberlyst15 were placed into a 2ml Eppendorf tube. 1ml of sat. NaCl/H<sub>2</sub>O were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 120h. Aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF and dendroketose was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard. For the further reaction cycles, the reaction solution was discarded and the catalyst was washed 3 times with sat. NaCl solution. 1 ml of a solution that contains 100 mg dendroketose in total was given to the recycled Amb15 beads and the reaction was conducted at 80°C for 120h using an Eppendorf shaker. Aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF and dendroketose was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.



Figure S 5. Recycling of Amb15 beads for dehydration reaction of dendroketose to produce 4-HMF.

For the control experiment, 100 mg Amberlyst15 were placed into a 2ml Eppendorf tube. 1ml of sat. NaCl/H<sub>2</sub>O were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 120h. 1ml of the reaction solution was removed from the Amb15 beads and 100mg of dendroketose was added to the solution. The tubes were placed in an Eppendorf-shaker, and were shaken at 800 rpm and 80°C for 120h without Amb15 beads.



**Figure S 6.** Recycling of Amb15 beads for dehydration reaction of dendroketose to produce 4-HMF. Control experiment.

#### Control experiment for the HCl catalyzed dendroketose dehydration

100 mg dendroketose was placed into a 2ml Eppendorf tube. 1ml of sat. NaCl/H<sub>2</sub>O including 0.25M HCl, or 1ml of 0.25M HCl in D.I. water were placed into the tube. The tubes were placed in an Eppendorf-shaker, and were shaked at 800 rpm and 80°C for 120h. Aliquots of the reaction mixture were diluted in D<sub>2</sub>O and the amount of 4-HMF and dendroketose was quantified via <sup>1</sup>H-NMR using potassium formate as the internal standard.



**Figure S 7.** Dendroketose dehydration reaction in presence of 0.25M HCl in D.I. water and in sat. NaCl solution.