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Scheme S1. A representative sketch of the Thalesnano Phoenix flow reactor. 
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Table S1. Representative heterogeneous catalysts used for converting alkyl levulinates to GVL in 
batch reactors with the results obtained using the Al2O3-ZrO2/C (1:1) catalyst in this study.

Catalyst Conditions Conversion 
(%)

Selectivity 
(%) Ref.

UiO-66(Zr) 0.1 g of catalysts, 1 mmol of ML in 5 mL of 2-butanol, 
140 °C, Ar, 0.5 MPa, t = 9 h (batch reaction) 70 51 1

UiO-66(Zr) 0.22 g of catalysts, 4 mmol of EEd in 400 mmol of 
isopropanol, 130 °C, t = 3 h (batch reaction) 43.3 18.5 2

UiO-66S60
100 mg of catalyst, 1 mmolv of ML, 5 mL of 2-BuOH, 

Ar 0.5 MPa, 140 ºC t= 9 h 98 82 3

UiO-66 (Zr) 150 ºC, 4h, 2-butanol, Ethyl levulinate 63 25 4

Al7-Zr3-300 0.072 g of catalysts, 1 mmol of EEd in 5 mL of 
isopropanol, 220 °C, t = 4 h (batch reaction) 95.5 87.1 5

ZrO2

0.30 g of ZrO2 catalyst, 40 mL solution of β-angelica 
lactone 10 wt %, t= 8 h, N2 pressure 10 bar, stirring 

500 rpm (batch reaction)
72 77 [6]

Ni-Co 1 g of catalyst, 2-propanol, t= 6h (batch reaction) 98 75 [7]
Al2O3-ZrO2/C 

(1:1) Flow 0.5 mL/min, 220 ºC, 0.5 g cat 100 85 This 
work
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Figure S1. N2 physisorption isotherms of calcined MOF-derived Al2O3-ZrO2/C catalysts.
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Figure S2. XPS spectra of Al2O3-ZrO2/C (1:1).
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Figure S3. TEM images of Al2O3-ZrO2/C (1:1) catalyst.
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Figure S4. SEM images of Al2O3-ZrO2/C (1:1) catalyst.
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Figure S5. EDS images of a) Al2O3-ZrO2/C (2:1) b) Al2O3-ZrO2/C (1:1) c) Al2O3-ZrO2/C (1:2) catalyst.
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Figure S6. Chromatogram spectrum from GC-MS of reaction at 30 min from Al2O3-ZrO2/C (1:1). 
Reaction conditions: 200 ºC, 0.5 mL/min, 30 bar pressure, 0.2 mol/L of ML in 2-propanol. 
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Figure S7. CTH of methyl levulinate into -valerolactone promoted by Al2O3-ZrO2/C (1:2) and Al2O3-
ZrO2/C (2:1) catalysts against time (reaction conditions: 0.5 mL/min flow rate; ML 0.2 M in 2-
propanol; 0.500 g of catalyst; 30 bar of pressure; reaction temperature: 200 °C).
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