Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1	Supplementary Information
2	
3	Mussel-mimetic Thermal Conductive Films with Solid-solid
4	Phase Change and Shape-adaptive Performance
5	Donglei Li ^a , Canxia Ding ^a , Sicong Shen ^a , Jun Wang ^a , Limin Wu ^a , Bo You ^{a*} Guibao Tao ^{b*}
6	^a Department of Materials Science and Advanced Coatings Research Center of Ministry of
7	Education of China, Fudan University, Shanghai, 200438, People's Republic of China.
8	^b State Key Laboratory of Mechanical Transmissions/ College of Mechanical and Vehicle
9	Engineering, Chongqing University, Chongqing 400044, P. R. China
10	Corresponding Author
11	*E-mail: youbo@fudan.edu.cn (B. You), gbtao@cqu.edu.cn (G.B. Tao)
10	

1 This file contains

S1. Supporting figures: Figure S1-S8
 S2. Supporting tables: Table S1-S5
 4
 5
 6

19

2 Figure S2. (a) Photos of PEG (left) and MPEG (right) aqueous solutions at 10 mg/mL.

3 (b) High contrast transmission electron microscopy image of MPEG spherical
4 aggregates in 10 mg/mL aqueous solution. (c) Particle size distribution of MPEG
5 spherical aggregates in 10 mg/mL aqueous solution.

6

2 Figure S3. Water contact angle of (a) PEG film and (b) CPEG film.

- 1 Figure S4. SEM image of the surface of bio-BN/CPEG film with 20vol% BN filling.

- 1
- 2 Figure S5. Photo of using an infrared thermal imager to test LED lamp bead
- 3 temperature.

2 Figure S6. Comparison the maximum thermal conductivity of our film with the3 previously reported BN-based polymer composites under different BN loading loads.4

- 2 Figure S7. Demonstration of adhesion of bio-composite films with 20 vol% BN filler
- 3 to different substrates at room temperature.

2~~Figure~S8~SEM images of MPEG aggregates in aqueous solution at high concentration (100 mg/mL).

1 Table S1 The difference of boron nitride content and preparation method in different

Samples	The volume fraction of BN (%)	The mass fraction of BN (%)	Whether or not it has undergone a hot-pressing process
O-BN/CPEG-5	5	9	Yes
O-BN/CPEG-10	10	18	Yes
O-BN/CPEG-15	15	27	Yes
O-BN/CPEG-20	20	34	Yes
R-BN/CPEG-5	5	9	No
R-BN/CPEG-10	10	18	No
R-BN/CPEG-15	15	27	No
R-BN/CPEG-20	20	34	No

2 samples.

1	Table S2 DSC heating an	l cooling characteristics	of the samples in t	he temperature
---	-------------------------	---------------------------	---------------------	----------------

Sample	$\Delta H_h [J/g]$	$T_h [^{\circ}C]$	ΔH_{c} [J/g]	^{<i>T</i>} ^{<i>C</i>} [°C]
PEG	178	65.2	173	39.9
CPEG	155	59.8	151	43.2
O-BN/CPEG-5	141	59.8	141	43.4
O-BN/CPEG-10	124	59.1	120	44.0
O-BN/CPEG-15	111	59.3	107	43.1
O-BN/CPEG-20	103	59	101	43.5

2 range of -10-90 °C.

- 4

Sample	$\lambda_{in-plane}$	$\lambda_{cross-plane}$	The filler	Reference
	[W/(m · K)]	[W/(m · K)]	loading	
			(vol%)	
This work	9.48	1.44	15	
This work	10.8	2.43	20	
BNNS/GO/PEG	4.41	2.55	11.65	1
BNNS/LM/PEG	8.8	7.64	30	2
BN/CNT/Epoxy	0.98	0.99	18	3
BNNS/Epoxy	6.54	0.7	15	4
BNNS/SiC/Epoxy	1.43	4.22	21.9	5
BNNS/PEG	4.76	1.29	10	6
BNNS/PDMS	11.05	1.15	10	7
BN/rGO/Epoxy	3.5	5.05	13.16	8
BN/HDPE	3.57	0.62	21.8	9
BN/PVA	8.28	0.63	27	10
BN/Epoxy	0.7	0.7	11	11
BN/POE	0.72	6.94	43.75	12
BN/SR	0.74	5.4	39	13
BN/SiR	1.3	7.62	56.7	14
BN/Epoxy	4.02	3.87	15	15

Table S3 Comparison of the thermal conductivity of our O-BN/CPEG bio-composite
 film with previously reported results

1	Table S4 Comparison of the therma	l conductivity and	d latent heat of phase	transition of
---	-----------------------------------	--------------------	------------------------	---------------

2 our O-BN/CPEG bio-composite film with previously reported results for PEG-based

3	phase	change	materia	ls
---	-------	--------	---------	----

Sample	Latent	Thermal	The filler	Reference
	heat	conductivity	loading	
	[J/g]	[W/(m·K)]	(vol%)	
This work	141	1.02	5	
This work	120	1.52	10	
This work	107	9.48	15	
This work	101	10.8	20	
BNNS/GO/PEG	147.5	4.41	11.65	1
BNMS/LM/PEG	80	8.8	30	2
CNTs/PEG	78.5	0.5	1.5	16
BN/CF/PEG	107.9	1.66	32	17
WG/HNT@AgNPs/PEG	103.6	1.15	25	18
CNT/PVP/PEG	103	0.265	4.1	19
BNNS/GO/PEG	121.9	2.62	10	20
BNNS/PEG	122.8	4.76	10	6
BNNS/GNP/PEG	116	1.33	17	21
BN/BC/PEG	134	3.26	16.3	22
BN/GO/PEG	131	2.36	12.5	23
BP/PEG	103	1.81	20	24

Sample	Thermal diffusion	Density	Specific heat	Thermal
	coefficient	[g/cm ³]	capacity	conductivity
	[mm ² /s]		$\left[J/(g \cdot K) \right]$	$[W/(m \cdot K)]$
CPEG	0.19	1.1	1.91	0.40
(in-plane)				
CPEG	0.12	1.1	1.91	0.25
(out-of-plane)				
O-BN/CPEG-5	0.45	1.17	1.95	1.02
(in-plane)				
O-BN/CPEG-5	0.18	1.17	1.95	0.41
(out-of-plane)				
O-BN/CPEG-10	0.63	1.28	1.86	1.52
(in-plane)				
O-BN/CPEG-10	0.30	1.28	1.86	0.72
(out-of-plane)				
O-BN/CPEG-15	4.05	1.36	1.72	9.48
(in-plane)				
O-BN/CPEG-15	0.62	1.36	1.72	1.44
(out-of-plane)				
O-BN/CPEG-20	4.50	1.41	1.71	10.85
(in-plane)				
O-BN/CPEG-20	1.01	1.41	1.71	2.44
(out-of-plane)				

1 Table S5 Thermal diffusion coefficient, density, specific heat capacity and thermal

2 conductivity of O-BN/CPEG bio-composite film with different hexagonal boron nitride

3 micron content.

4

5

6

1 Reference

- 2
- 3
- D. Liu, C. Lei, K. Wu, *et al.*, A multidirectionally thermoconductive phase
 change material enables high and durable electricity via real-environment solar–
 thermal–electric conversion, *ACS Nano*, 2020, 14(11), 15738-15747.
- C. Guo, L. He, Y. Yao, *et al.*, Bifunctional liquid metals allow electrical
 insulating phase change materials to dual-mode thermal manage the li-ion
 batteries, *Nano-Micro Lett.*, 2022, 14(1), 202.
- Z. Su, H. Wang, J. He, *et al.*, Fabrication of thermal conductivity enhanced
 polymer composites by constructing an oriented three-dimensional staggered
 interconnected network of boron nitride platelets and carbon nanotubes, *ACS Appl. Mater. Interfaces*, 2018, **10**(42), 36342-36351.
- J. Han, G. Du, W. Gao, *et al.*, An anisotropically high thermal conductive boron nitride/epoxy composite based on nacre-mimetic 3d network, *Adv. Funct. Mater.*, 2019, **29**(13), 1900412.
- C. Xiao, Y. Guo, Y. Tang, *et al.*, Epoxy composite with significantly improved thermal conductivity by constructing a vertically aligned three-dimensional network of silicon carbide nanowires/ boron nitride nanosheets, *Compos. B. Eng.*, 2020, **187**, 107855.
- C. Lei, K. Wu, L. Wu, *et al.*, Phase change material with anisotropically high
 thermal conductivity and excellent shape stability due to its robust
 cellulose/bnnss skeleton, *J. Mater. Chem. A*, 2019, 7(33), 19364-19373.
- H. Hong, Y. H. Jung, J. S. Lee, *et al.*, Anisotropic thermal conductive composite
 by the guided assembly of boron nitride nanosheets for flexible and stretchable
 electronics, *Adv. Funct. Mater.*, 2019, **29**(37), 1902575.
- Y. Yao, J. Sun, X. Zeng, *et al.*, Construction of 3d skeleton for polymer
 composites achieving a high thermal conductivity, *Small*, 2018, 14(13),
 1704044.
- X. Zhang, J. Zhang, L. Xia, *et al.*, Simple and consecutive melt extrusion
 method to fabricate thermally conductive composites with highly oriented
 boron nitrides, ACS Appl. Mater. Interfaces, 2017, 9(27), 22977-22984.
- J. Zhang, X. Wang, C. Yu, *et al.*, A facile method to prepare flexible boron nitride/poly(vinyl alcohol) composites with enhanced thermal conductivity, *Compos. Sci. Technol.*, 2017, 149, 41-47.
- J. Ma, N. Luo, Z. Xie, *et al.*, Preparation of modified hexagonal boron nitride by
 ball-milling and enhanced thermal conductivity of epoxy resin, *Mater. Res. Express*, 2019, 6(10), 1050d1058.
- C. P. Feng, L. Bai, R. Y. Bao, *et al.*, Electrically insulating poe/bn elastomeric composites with high through-plane thermal conductivity fabricated by two-roll milling and hot compression, *Adv. Compos. Hybrid Mater.*, 2018, 1(1), 160-167.
- Y. Xue, X. Li, H. Wang, *et al.*, Improvement in thermal conductivity of throughplane aligned boron nitride/silicone rubber composites, *Mater. Des.*, 2019, 165, 107580.
- 46 14 Q. Hu, X. Bai, C. Zhang, *et al.*, Oriented bn/silicone rubber composite thermal interface materials with high out-of-plane thermal conductivity and flexibility, *Compos. Part A Appl. Sci. Manuf.*, 2022, **152**, 106681.
- T. Huang, Y. Li, M. Chen, *et al.*, Bi-directional high thermal conductive epoxy composites with radially aligned boron nitride nanosheets lamellae, *Compos. Sci. Technol.*, 2020, **198**, 108322.
- J. Shi, W. Aftab, Z. Liang, *et al.*, Tuning the flexibility and thermal storage capacity of solid-solid phase change materials towards wearable applications, *J. Mater. Chem. A*, 2020, 8(38), 20133-20140.
- 55 17 S. Gong, X. Li, M. Sheng, et al., High thermal conductivity and mechanical

- 1 strength phase change composite with double supporting skeletons for industrial 2 3 waste heat recovery, ACS Appl. Mater. Interfaces, 2021, 13(39), 47174-47184. 18 W. Yang, R. Lin, X. Li, et al., High thermal conductive and anti-leakage 4 composite phase change material with halloysite nanotube for battery thermal 5 6 7 management system, J. Energy Storage, 2023, 66, 107372. 19 W. Zhang, Х. Zhang, Υ. Xu, et al., Flexible polyethylene glycol/polyvinylpyrrolidone composite phase change fibres: Preparation, 8 characterization, and thermal conductivity enhancement, *Polymer*, 2021, 214, 9 123258. 10 20 Y. Lu, R. Hu, X. Chen, et al., A strategy for constructing 3d ordered boron 11 nitride aerogels-based thermally conductive phase change composites for 12 battery thermal management, J Mater Sci Technol, 2023, 160, 248-257. 13 21 J. Yang, L. S. Tang, R. Y. Bao, et al., Largely enhanced thermal conductivity of 14 poly (ethylene glycol)/boron nitride composite phase change materials for solar-15 thermal-electric energy conversion and storage with very low content of 16 graphene nanoplatelets, Chem. Eng. J., 2017, 315, 481-490. 22 17 L. S. Tang, Y. C. Zhou, L. Zhou, et al., Double-layered and shape-stabilized 18 phase change materials with enhanced thermal conduction and reversible 19 thermochromism for solar thermoelectric power generation, Chem. Eng. J., 20 2022, **430**(2), 132773. 21 23 J. Yang, P. Yu, L. S. Tang, et al., Hierarchically interconnected porous scaffolds 22 for phase change materials with improved thermal conductivity and efficient 23 solar-to-electric energy conversion, Nanoscale, 2017, 9(45), 17704-17709. 24 24 Y. Wang, Y. Chen, W. Dai, et al., Anisotropic black phosphorene structural 25 modulation for thermal storage and solar-thermal conversion, Small, 19(52), 26 2303933.
- 27