Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

MXene/CdS photothermal-photocatalytic hydrogel for efficient solar

water evaporation and synergistic degradation of VOC

Zhen-Yu Wang a, Lei Xu a, Cai-Hua Liu a, Sheng-Jie Han a, Ming-Lai Fu a,*, Baoling Yuan ab,*

^a Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control,

College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, P.R. China

^b Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University,

Changchun, 130118, P.R. China

*Corresponding author. Tel.: +86 592 6162705; fax: +86 592 6162705.

E-mail addresses: mlfu@iue.ac.cn (M.-L. Fu); mlfu@hqu.edu.cn.

Fig. S1. (a) Schematic and (b) a digital photo of solar-driven interfacial water evaporation device.

Fig. S2. Schematic of laboratory-made distilled water collection device and internal evaporator.

Fig. S3. XRD spectra of (a) Ti_3C_2 and Ti_3AlC_2 , (b) CdS and MC composites. (c-d) TEM andHRTEMimagesof Ti_3C_2 MXene.

Fig. S4. SEM images of (a-c) MCH-1 and (d-f) MCH-3.

Fig. S5. XPS spectra of MC composites: (a) Ti 2p, (b) C 1s, (c) Cd 3d, and (d) S 2p.

Fig. S6. UV/ViS-NIR (a) absorption, (b) reflection, and (c) projection spectra of MCHs.

Fig. S7. Surface wettability of (a) MH, (b) MCH-1, and (c) MCH-3 at different contact times.

Fig. S8. Water pumping with (a) MH, (b) MCH-1, (c) MCH-2, and (d) MCH-3 and distribution on white cellulose paper at different times.

Fig. S9. Infrared images of (a) BH, (b) CH, (c) MCH-1, (d) MCH-3, and (e) MH at different time pointsunder1.0sun.

S1. Calculation of the equivalent evaporation enthalpy of water in hydrogels.

The evaporation enthalpy is determined by using the dark state equivalence method. The mass changes of hydrogels and pure water were measured after evaporation in a closed dark environment at 25°C, 35% humidity, and normal pressure for 3h. The calculation formula is as follows:

 $\Delta H_{vap} m_0 = \Delta H_{equ} m_g$

Where ΔH_{vap} is the evaporation enthalpy of pure water (2441.7 J g⁻¹), ΔH_{equ} is the equivalent evaporation enthalpy of water in hydrogels, m_0 and m_g are the mass changes of pure water and water in hydrogel, respectively.

Samples	Morphological structure	Power density	Evaporation rate	Ref.
		$(kW m^{-2})$	$(\text{kg m}^{-2} \text{ h}^{-1})$	
MXene/PEI/PDA	Modify melamine foam	1	1.50	[1]
PI/MXene	Hybrid aerogel	1	1.24	[2]
MXene/MMT	Hierarchical binary gel	1	1.37	[3]
MXene/Melamine foam	3D microporous architectures	1	1.41	[4]
GO/MXene	3D porous aerogel	1	1 1.27	
MF-MXene/PPy	Porous melamine foam	1	1.52	[6]
JPP@MXene	3D porous sponge	1	1.48	[7]
Carbonized MXene/PDA foam	3D network skeleton	1	1.60	[8]
Ferrous ion-crosslinked $Ti_3C_2T_x$ MXene-based	2D porous films	1	1.67	[9]
aerogel films				
TiO ₂ /Ti ₃ C ₂ /C ₃ N ₄ /PVA	Porous network hydrogel	1	1.54	[10]
Ti ₃ C ₂ MXene/CdS hydrogel		1	1.80	This work

Table S1. Comparison of water evaporation performance with MXene-based solarphotothermal evaporation materials in recent literature reports.

References

- 1 D. Jiang, C. J. O. Bacal, K. A. S. Usman, J. Zhang, S. Qin, D. Hegh, W. Lei, J. Liu and J. M. Razal, *Advanced Materials Technologies*, 2023, **8**, 2201611.
- 2 Z. Zheng, H. Liu, D. Wu and X. Wang, Chemical Engineering Journal, 2022, 440, 135862.
- 3 Z. Ai, Y. Zhao, R. Gao, L. Chen, T. Wen, W. Wang, T. Zhang, W. Ge and S. Song, *Journal of Cleaner Production*, 2022, **357**, 132000.
- 4 X. Zhao, X.-J. Zha, J.-H. Pu, L. Bai, R.-Y. Bao, Z.-Y. Liu, M.-B. Yang and W. Yang, *Journal of Materials Chemistry A*, 2019, 7, 10446-10455.
- 5 X. Ming, A. Guo, Q. Zhang, Z. Guo, F. Yu, B. Hou, Y. Wang, K. P. Homewood and X. Wang, *Carbon*, 2020, **167**, 285-295.
- 6 X. Mu, L. Chen, N. Qu, J. Yu, X. Jiang, C. Xiao, X. Luo and Q. Hasi, *Journal of Colloid and Interface Science*, 2023, **636**, 291-304.
- 7 H.-S. Guan, T.-T. Fan, H.-Y. Bai, Y. Su, Z. Liu, X. Ning, M. Yu, S. Ramakrishna and Y.-Z. Long, *Carbon*, 2022, **188**, 265-275.
- 8 Y. Jin, K. Wang, S. Li and J. Liu, *Journal of Colloid and Interface Science*, 2022, **614**, 345-354.
- 9 X. P. Li, X. Li, H. Li, Y. Zhao, W. Li, S. Yan and Z. Z. Yu, *Advanced Sustainable Systems*, 2021, **5**, 2100263.
- 10 H. Mo and Y. Wang, Water Research, 2022, 226, 119276.

Table S2. The evaporation enthalpy of water in MCHs and pure water is calculated $_{\circ}$

1	1 5			1			
Sample	Water	BH	СН	MH	MCH-1	MCH-2	MCH-3
Enthalpy (J g ⁻¹)	2441.7	2027.3	1891.5	1600	1661.5	1748.8	1636.3

Note: h_{LV} and ΔH_{equ} are numerically equivalent.