Supporting Information

Counter-anion Size Engineering in Polyfluorene-based Cathode Interlayer to Enhance the Thickness Independence

Yurim Bae, \ddagger Jeongsu Kim, ${ }^{\ddagger}$ Sang Ah Park, Haeryang Lim, Dae Hwan Lee, Taiho Park* and Yelim Choi*

(1)

Scheme S1. Synthetic route of PFN(E)-Br and PFN(E)-TFSI.

Synthesis of 3,3'-(2,7-Dibromo-9H-fluorene-9,9-diyl)bis(\mathbf{N}, \mathbf{N}-dimethylpropan-1-amine) (1) : 2,7Dibromofluorene ($3.69 \mathrm{~g}, 15.4 \mathrm{mmol}$) was diluted in dimethyl sulfoxide (100 mL) with stirring under nitrogen atmosphere. $50 \mathrm{wt} \%$ of NaOH in water (40 mL), tetrabutylammonium bromide $(73 \mathrm{mg}, 0.31$ mmol), and 3-dimethylamino-1-propyl chloride hydrochloride ($7.0 \mathrm{~g}, 60.1 \mathrm{mmol}$) were added to the solution, and stirred for 5 h at room temperature. The reaction was then quenched with cold water (200 mL). The organic materials were extracted with diethyl ether, and the combined organic layers were washed with aq. HCl and dried over anhydrous MgSO_{4}. Pure product was purified by recrystallization in methanol ($2.31 \mathrm{~g}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.52-7.43 (m, 6H), 2.03-1.95 (m, 20H), 0.79-0.71 (m, 4H).

Synthesis of 9,9-Dioctyl-2,7-dibromofluorene (2) : The solution of 2,7-dibromofluorene (3.69 g, 15.4 mmol), $50 \mathrm{wt} \%$ of NaOH in water (40 mL), tetrabutylammonium bromide ($73 \mathrm{mg}, 0.31 \mathrm{mmol}$), and 1bromooctane ($5.54 \mathrm{~g}, 60.1 \mathrm{mmol}$) was stirred for overnight at room temperature condition. The reaction was then quenched with cold water (200 mL). The organic materials were extracted with diethyl ether, and the combined organic layers were washed with aq. HCl and dried over anhydrous MgSO_{4}. Product was purified by silica column chromatography with hexane ($4.11 \mathrm{~g}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDC1}_{3}, \delta$): 7.53-7.42 (m, 6H), 1.94-1.87 (m, 4H), 1.27-1.00 (br, 20H), 0.86-0.80 (t, 6H), 0.63-0.54 (br, 4H).

Synthesis of 9,9-Dioctyl-9H-fluorene-2,7-diboronic acid bis(pinacol) ester (3) : The compound 2 (1.5 $\mathrm{g}, 2.74 \mathrm{mmol}$) was diluted in THF (30 mL) and cooled to $-78^{\circ} \mathrm{C}$. The $2.5 \mathrm{M} n-\mathrm{BuLi}$ in hexane $(2.85 \mathrm{~mL})$ was slowly added to solution. After stirring at $-78^{\circ} \mathrm{C}$ for $1 \mathrm{~h}, 2$-isopropoxy-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($1.5 \mathrm{~mL}, 2.46 \mathrm{mmol}$) was added dropwise, and the mixture was gradually warmed to room temperature. The reaction mixture was stirred for 5 h , and then quenched with cold water (200 mL). Product was purified by silica column chromatography with DCM/hexane (5.5:4.5) as eluent following to recrystallization in methanol ($980 \mathrm{mg}, 56 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDC1}_{3}, \delta$): 7.82-7.69 (m, 6H), 2.03-1.95 $(\mathrm{m}, 4 \mathrm{H}), 1.41-1.36(\mathrm{~s}, 24 \mathrm{H}), 1.26-0.95(\mathrm{br}, 20 \mathrm{H}), 0.84-0.77(\mathrm{t}, 6 \mathrm{H}), 0.59-0.48(\mathrm{br}, 4 \mathrm{H})$.

Synthesis of Poly [(9,9-bis(3'-(N,N-dimethylamino)propyl)-2,7-fluorene)-alt-2,7-(9,9-

 dioctylfluorene)] (PFN) : The neutral polymer was prepared by the Suzuki coupling polymerization method. Compound $\mathbf{1}$ ($157 \mathrm{mg}, 0.318 \mathrm{mmol}$), compound $\mathbf{3}(200 \mathrm{mg}, 0.318 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in water $(1.07 \mathrm{~mL})$, several drops of Aliquat 336, tetrakis(triphenylphosphine)palladium $(0)(5 \mathrm{mg})$ and anhydrous toluene (5 mL) were mixed in a 50 mL Schlenk flask under argon condition. The mixture was heated to $110^{\circ} \mathrm{C}$ for 48 h . Then, 0.05 mL each of 2-bromobenzene and phenylboronic acid pinacol ester were injected sequentially and further heated for 6 h . The crude solution was precipitated in methanol (500 mL). The precipitate was collected into a Soxhlet thimble and the product was obtained from Soxhlet extraction with acetone, hexane, dichloromethane and chloroform. The chloroform portion was concentrated and precipitated in methanol. The precipitate was filtered and dried overnight to afford the yellow solid product ($180 \mathrm{mg}, 45 \%$). GPC (chlorobenzene, $40^{\circ} \mathrm{C}$): $M_{n}=40 \mathrm{kDa}, M_{w}=84 \mathrm{kDa}, \mathrm{PDI}=2.1 .{ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta\right): 7.88-7.57$ (m, 12H), 2.35-1.90 (br, 20H), 1.85-1.65 (br, 4H), 1.33-1.04 (br, 22H), 1.03-0.92 (br, 4H), 0.91-0.65 (m, 8H).Synthesis of Poly(9,9-bis(3'-(N, N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9dioctylfluorene))dibromide (PFN(E)-Br) : To solution of PFN (100 mg) in tetrahydrofuran (20 mL) and dimethyl sulfoxide $(10 \mathrm{~mL})$, bromoethane $(0.08 \mathrm{~mL})$ was added and heated to $50^{\circ} \mathrm{C}$. Then, the reaction
mixture was stirred for 24 h at dark condition. The resulting solution was precipitated in ethyl acetate (200 mL). The final product was filtered and dried in a vacuum to obtain yellow solid ($90 \mathrm{mg}, 57 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 8.14-7.75 (m, 12H), 3.22-3.10 (m, 8H), 2.91-2.75 (s, 12H), 2.56-2.11 (br, 8 H), $1.39-0.95$ (br, 30H), 0.84-0.66 (br, 10H).

Synthesis of Poly(9,9-bis(3'-(N,N-dimethyl)-N-ethylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9dioctylfluorene))bis(trifluoromethane)sulfonimide (PFN(E)-TFSI) : To solution of PFN(E)-Br (30 mg) in methanol (1 mL) and water (3 mL), Bis(trifluoromethane) sulfonimide lithium salt (LiTFSI) (94 mg) was added and heated to $50^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred for 24 h at dark condition. The resulting solution was precipitated in ethyl acetate $(200 \mathrm{~mL})$. The final product was filtered and dried in a vacuum to obtain yellow solid ($24 \mathrm{mg}, 80 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 8.12-7.72 (m, 12H), 3.19-3.00 (m, 8 H), 2.88-2.70 ($\mathrm{s}, 12 \mathrm{H}$), 2.57-2.08 (br, 8H), 1.40-0.95 (br, 30H), 0.86-0.59 (br, 10H).

(4)

Scheme S2. Synthetic route of $\operatorname{PFN}(\mathrm{M})-\mathrm{Br}$ and $\operatorname{PFN}(\mathrm{M})-\mathrm{TFSI}$.

Synthesis of 2,7-Dibromo-9,9-bis(3-bromopropyl)-9H-fluorene (4) : To a solution of 2,7dibromofluorene ($3.69 \mathrm{~g}, 15.4 \mathrm{mmol}$), tetrabutylammonium bromide ($73 \mathrm{mg}, 0.31 \mathrm{mmol}$), and $1,3-$ dibromopropane ($23 \mathrm{~mL}, 115 \mathrm{mmol}$), $50 \mathrm{wt} \%$ of NaOH in water $(40 \mathrm{~mL}$) was added and stirred for overnight at room temperature condition. The reaction was then quenched with cold water (200 mL). The organic materials were extracted with diethyl ether, and the combined organic layers were washed with aq. HCl and dried over anhydrous MgSO_{4}. Product was purified by silica column chromatography with hexane/DCM (9.5:0.5) as eluent ($3.92 \mathrm{~g}, 50 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta$): 7.54-7.40 (m, 6 H), 3.11-3.03 (t, 4H), $2.24-2.12(\mathrm{~m}, 4 \mathrm{H}), 1.14-1.04(\mathrm{~m}, 4 \mathrm{H})$.

Synthesis of Poly [(9,9-bis(3'-bromopropyl)-2,7-fluorene)-alt-2,7-(9,9-dioctylfluorene)] (PFN-3Br) : The neutral polymer was prepared by the Suzuki coupling polymerization method. Compound 4 (176 mg , 0.318 mmol), compound $\mathbf{3}(200 \mathrm{mg}, 0.318 \mathrm{mmol}), 2 \mathrm{M} \mathrm{K}_{2} \mathrm{CO}_{3}$ in water (5 mL), several drops of Aliquat 336 , tetrakis(triphenylphosphine)palladium $(0)(5 \mathrm{mg})$ and anhydrous toluene $(5 \mathrm{~mL})$ were mixed in a 50 mL Schlenk flask under argon condition. The mixture was heated to $110^{\circ} \mathrm{C}$ for 48 h . Then, 0.05 mL each of 2-bromobenzene and phenylboronic acid pinacol ester were injected sequentially and further heated for 6 h . The crude solution was precipitated in methanol $(500 \mathrm{~mL})$. The precipitate was collected into a Soxhlet thimble and the product was obtained from Soxhlet extraction with acetone, hexane, dichloromethane and chloroform. The chloroform portion was concentrated and precipitated in methanol. The precipitate was filtered and dried overnight to afford the yellow solid product ($220 \mathrm{mg}, 68 \%$). GPC (chlorobenzene, $40^{\circ} \mathrm{C}$): $M_{n}=31 \mathrm{kDa}, M_{w}=70 \mathrm{kDa}, \mathrm{PDI}=2.26 .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 7.91-7.79(\mathrm{br}, 4 \mathrm{H}), 7.76-7.65(\mathrm{br}$,
$8 \mathrm{H}), 3.26-3.15(\mathrm{~m}, 4 \mathrm{H}), 2.58-2.24(\mathrm{br}, 4 \mathrm{H}), 2.21-1.95(\mathrm{br}, 4 \mathrm{H}), 1.45-1.28(\mathrm{br}, 4 \mathrm{H}), 1.25-1.06(\mathrm{br}, 24 \mathrm{H})$, $0.84-0.78(\mathrm{t}, 6 \mathrm{H})$.

Synthesis of Poly(9,9-bis(3'-(N, N-dimethyl)-N-methylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9dioctylfluorene))dibromide (PFN(M)-Br) : To solution of PFN-3Br (700 mg) in chlorobenzene (30 mL) and N, N-dimethylformamide (21 mL), aqueous trimethylamine ($4.1 \mathrm{~mL}, 4.3 \mathrm{M}$) was added and heated to $50^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred for 24 h at dark condition. The resulting solution was precipitated in ethyl acetate $(200 \mathrm{~mL})$. The final product was filtered and dried in a vacuum to obtain yellow solid ($815 \mathrm{mg}, 65 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 8.08-7.75 (br, 12H), 3.30-3.16 (m, 4H), 2.95-2.87 (br, 18H), 2.68-2.07 (br, 8H), 1.34-1.03 (br, 24H), 0.86-0.65 (br, 10H).

Synthesis of Poly(9,9-bis(3'-(N,N-dimethyl)-N-methylammoinium-propyl-2,7-fluorene)-alt-2,7-(9,9dioctylfluorene))bis(trifluoromethane)sulfonimide (PFN(M)-TFSI) : To solution of PFN(M)-Br (445

 $\mathrm{mg})$ in methanol $(10 \mathrm{~mL})$ and water (3 mL), LiTFSI $(1.4 \mathrm{~g})$ was added and heated to $50^{\circ} \mathrm{C}$. Then, the reaction mixture was stirred for 24 h at dark condition. The resulting solution was precipitated in ethyl acetate (200 mL). The final product was filtered and dried in a vacuum to obtain yellow solid (456 mg , 71%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}, \delta$): 8.08-7.70 (br, 12H), 3.29-3.12 (m, 4H), 2.95-2.82 (br, 18H), 2.562.17 (br, 8H), 1.36-1.02 (br, 24H), 0.87-0.60 (br, 10H).

Figure S1. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of PFN-3Br.

Figure S2. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of $\mathrm{PFN}(\mathrm{M})-\mathrm{Br}$.

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & \end{array}$

Figure S3. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR of PFN(M)-TFSI.

Figure S4. Gel permeation chromatography (GPC) profile of neutral polymer PFN-3Br

Figure S5. Thermogravimetric analysis (TGA) of each polymer (PFN-3Br, $\mathrm{PFN}(\mathrm{M})-\mathrm{Br}$ and $\mathrm{PFN}(\mathrm{M})-\mathrm{TFSI})$ under N_{2}.

Figure S6. Cross-section SEM image of the architecture. (ITO/PEDOT:PSS/PM6:Y6 BHJ/CIL/Ag) CIM film was spin coated on BHJ active layer, by 3000 rpm 30 s with (a) $15 \mathrm{mg} / \mathrm{mL}$ (b) $7 \mathrm{mg} / \mathrm{mL}$ and (c) $1 \mathrm{mg} / \mathrm{mL}$ of $\mathrm{PFN}(\mathrm{M})-\mathrm{Br}$ in MeOH . (d) Thickness graph according to the solution density and the values of thickness were extracted from the cross-section SEM images. The estimated thicknesses of thin film (from $\sim 5 \mathrm{~nm}$ to $\sim 20 \mathrm{~nm}$) were extracted using the linear fit.

Figure S7. The histogram for power conversion efficiency of different 20 devices, which used (a) PFN(M)Br or (b) PFN(M)-TFSI as cathode interlayer (CIL), according to the CIL thickness in a range of 5 nm to 20 nm .

Figure S8. The results of external quantum efficiency measurement on the condition of (a) 5 nm and (b) 15 nm thickness of PFN(M) series CIM.

b $\quad \mathrm{PFN}(\mathrm{M})$-TFSI

Figure S9. The raw data of R_{q} at 24 measurement points along diagonal line on (a) the $\mathrm{PFN}(\mathrm{M})-\mathrm{Br}$ and (b) $\operatorname{PFN}(\mathrm{M})$-TFSI films in the area from 0.25 to $100 \mathrm{~cm}^{2}$.

Figure S10. AFM image measuring 12 points diagonally of the $\operatorname{PFN}(\mathrm{M})-\mathrm{Br}$ over an area of $0.25 \mathrm{~cm}^{2}$.

Figure S11. AFM image measuring 24 points diagonally of the $\operatorname{PFN}(M)-\mathrm{Br}$ over an area of $1 \mathrm{~cm}^{2}$.

Figure S12. AFM image measuring 12 points diagonally of the PFN(M)-TFSI over an area of $0.25 \mathrm{~cm}^{2}$.

Figure S13. AFM image measuring 24 points diagonally of the $\operatorname{PFN}(M)-T F S I$ over an area of $1 \mathrm{~cm}^{2}$.

Figure S14. AFM image measuring 24 points diagonally of the $\operatorname{PFN}(M)-T F S I$ over an area of $9 \mathrm{~cm}^{2}$.

Figure S15. AFM image measuring 24 points diagonally of the PFN(M)-TFSI over an area of $25 \mathrm{~cm}^{2}$.

Figure S16. (a) The J-V curve of large-area devices, which applied $\operatorname{PFN}(\mathrm{E})-\mathrm{Br}$ as CIL, and (b) the histograms of power conversion efficiency for 10 different devices.

Figure S17. The J-V curve for the maximum power conversion efficiency at the thickness of 5 nm and 15 nm for $\operatorname{PFN}(\mathrm{M})-\mathrm{Br}$ and PFN(M)-TFSI CIL in (a) PM6:L8-BO and (c) D18:Y6 based OPV. Device efficiency distribution with average efficiency and standard deviation value for 15 different devices. (b) PM6:L8-BO and (d) D18:Y6 based OPV.

Table S1. Alpha step results of cathode interlayer thickness according to precursor concentration of cathode interlayer material and spin-coating conditions.

Condition	$0.5 \mathrm{mg} / \mathrm{ml}$ _dynamic		$0.5 \mathrm{mg} / \mathrm{ml}$ _static		$1 \mathrm{mg} / \mathrm{ml}$ _static		$2 \mathrm{mg} / \mathrm{ml}$ _static	
Material	PFN(M)-Br	PFN(M)-TFSI	PFN(M)-Br	PFN(M)-TFSI	PFN(M)-Br	PFN(M)-TFSI	PFN(M)-Br	PFN(M)-TFSI
1	5.0 nm	5.0 nm	9.3 nm	11.6 nm	14.6 nm	15.7 nm	18.3 nm	19.2 nm
2	5.5 nm	4.9 nm	11.9 nm	10.8 nm	14.2 nm	17.2 nm	20.4 nm	19.5 nm
3	3.4 nm	4.5 nm	10.7 nm	10.1 nm	17.8 nm	16.1 nm	20.7 nm	19.9 nm
4	4.7 nm	5.5 nm	8.8 nm	9.2 nm	17.6 nm	14.1 nm	20.1 nm	20.2 nm
5	6.6 nm	5.4 nm	9.0 nm	8.9 nm	12.7 nm	14.2 nm	19.2 nm	19.4 nm
Average	5.04 nm	5.06 nm	9.94 nm	10.12 nm	15.38 nm	15.46 nm	19.74 nm	19.64 nm

Table S2. The summary of J-V curve results with power conversion efficiency and device parameters of $\operatorname{PFN}(\mathrm{M})-\mathrm{Br}, \mathrm{PFN}(\mathrm{M})-\mathrm{TFSI}$ and $\operatorname{PFN}(\mathrm{E})-\mathrm{Br}$ employed devices with active area of $1.12 \mathrm{~cm}^{2}$.

CIM	$J_{\mathrm{SC}^{\mathrm{a}}}\left[\mathrm{mA} / \mathrm{cm}^{2}\right]$	$V_{\left.\mathrm{OC}^{\mathrm{b}}\right)}[\mathrm{V}]$	$\mathrm{FF}^{\mathrm{c}}[\%]$	$\mathrm{PCE}^{\mathrm{d})}[\%]$
$\operatorname{PFN}(\mathrm{M})-\mathrm{Br}$	24.6	0.81	58.7	11.74
$\operatorname{PFN}(\mathrm{M})-\mathrm{TFSI}$	24.5	0.81	62.7	12.44
$\operatorname{PFN}(\mathrm{E})-\mathrm{Br}$	22.6	0.83	56.4	10.58

$\overline{\text { a) }}$ Short circuit current density ; ${ }^{\text {b) }}$ Open circuit voltage ; ${ }^{\text {c }}$ Fill factor; ${ }^{\text {d) }}$ Best power conversion efficiency.

Table S3. The summary of J-V curve results with power conversion efficiency and device parameters of PFN(M)-Br and PFN(M)-TFSI employed devices with diverse active layer.

Active layer	CIM	Thickness	$J_{\text {SC }}{ }^{\text {a }}$	$V_{\mathrm{OC}}{ }^{\text {b) }}$	FF ${ }^{\text {c }}$	PCE ${ }^{\text {d }}$
			$\left[\mathrm{mA} / \mathrm{cm}^{2}\right]$	[V]	[\%]	[\%]
PM6:L8-BO	PFN(M)-Br	5 nm	25.4	0.88	72.0	16.09
		15 nm	25.0	0.88	55.7	12.25
	PFN(M)-TFSI	5 nm	25.6	0.88	72.8	16.40
		15 nm	25.4	0.88	62.9	14.06
D18:Y6	PFN(M)-Br	5 nm	26.8	0.87	71.1	16.58
		15 nm	26.8	0.87	55.1	12.92
	PFN(M)-TFSI	5 nm	27.0	0.87	72.0	16.91
		15 nm	27.0	0.87	69.2	16.26

${ }^{\text {a) }}$ Short circuit current density ; ${ }^{\text {b) }}$ Open circuit voltage ; ${ }^{\text {c }}$ Fill factor; ${ }^{\text {d) }}$ Best power conversion efficiency.

