Supplementary Material for

Tracking Accelerated Oxygen Evolution Reaction Enabled by Explosive Reconstruction of Active Species based on Co_xN@NC

Hyung Wook Choi^{a, 1}, Jiwon Kim^{b, 1}, Hyeon-Seok Bang^{b,e,f}, Khaled Badawy^c, Ui Young Lee^b, Dong In Jeong^b, Yeseul Kim^b, Kotiba Hamad^b, Bong Kyun Kang^d, Byung Mook Weon^b, Hyung-Suk Oh^{e,f,*}, Nirpendra Singh^{g,*}, Dae Ho Yoon^{a,b,*}

^a SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University, Suwon 16419, Republic of Korea

^b School of Advanced Materials Science and Engineering, Sungkyunkwan University, 2066, Seobu-ro,

Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea

^c Mechanical Engineering Department, Khalifa University of Science and Technology, Abu Dhabi-127788, UAE

^d Department of Electronic Materials, Devices, and Equipment Engineering, Soonchunhyang

University, 22, Soonchunhyang-ro, Asan City, Chungnam, 31538, Republic of Korea

^e Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Hwarang-ro 14-

gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea

^f KIST-SKKU Carbon-Neutral Research Center, Sungkyunkwan University (SKKU), Suwon 16419,

Republic of Korea

^g Department of Physics, Khalifa University of Science and Technology, Abu Dhabi-127788, UAE

* Corresponding Authors

Email address: dhyoon@skku.edu (D. H. Yoon)

Email address: hyung-suk.oh@kist.re.kr (H. Oh)

Email address: <u>nirpendra.singh@ku.ac.ae</u> (N. Singh)

¹ These authors contributed equally to this work.

Reactant	ZPE [eV]	TS [eV]	Reaction	$\Delta ZPE-T\Delta S$ [eV]
0	0.06	0.01	1	0.32
OH	0.34	0.06	2	-0.30
OOH	0.43	0.07	3	0.41
H ₂ O	0.56	0.67	4	-0.37
H ₂	0.27	0.41	-	-

Table S1. Calculated ZPE and entropropy corrections terms for individual reactants and full reaction steps.

Fig. S1. SEM images of the $Co_3[Co(CN)_6]_2$ PBAs synthesized at various condition. $Co_3[Co(CN)_6]_2$ PBAs synthesized with control of the amount of SDBS as (a) 1 g, (b) 1.25 g, (c) 1.5 g, control of pH as (d) 3, (e) 2, (f) 1, and control of temperature as (g) 50 °C, (h) 55 °C, and (i) 60 °C.

Fig. S2. TG-DTA curves of the $Co_3[Co(CN)_6]_2$ PBA@PDA coated for 18 h.

Fig. S3. FT-IR spectra of the $Co_3[Co(CN)_6]_2$ PBA, $Co_3[Co(CN)_6]_2$ PBA@PDA coated for 18 h, and $Co/Co_4N@NC$.

Fig. S4. SEM images of the $Co_3[Co(CN)_6]_2$ PBA@PDA with polymerization for (a) 6 h and (b) 12 h. SEM images after the nitridation of (c) the $Co_3[Co(CN)_6]_2$ PBA@PDA coated for 6 h and (d) $Co_3[Co(CN)_6]_2$ PBA@PDA coated for 12 h.

Fig. S5. SEM images of (a) the $Co_3[Co(CN)_6]_2$ PBA and (b) $Co_3[Co(CN)_6]_2$ PBA@PDA with polymerization for 18 h.

Fig. S6. Line EDS profile of (a) $Co_3[Co(CN)_6]_2$ PBAs@PDA and (b) $Co/Co_4N@NC$.

Fig. S7. SEM images of (a) the Co₃N@NC, (b) Co/Co₃N@NC, and (c) Co/Co₄N@NC.

Fig. S8. (a) SEM image and (b) XRD pattern of the bulk Co_xN.

Fig. S9. CV curves for (a) the $Co_3N@NC$, (b) $Co/Co_3N@NC$, and (c) $Co/Co_4N@NC$ at different scan rates of $10 - 100 \text{ mV s}^{-1}$. (d) ECSA with Cdl calculated from CV and (e) Nyquist plots of the $Co_3N@NC$, $Co/Co_3N@NC$, and $Co/Co_4N@NC$.

Fig. S10. TEM image and EDS mapping results of the Co/Co₄N@NC after 24 h of stability test.

Fig. S11. Image of electrocatalysts on carbon paper electrode of (a) $Co_3N@NC$ electrode, (b) $Co/Co_3N@NC$ electrode, and (c) $Co/Co_4N@NC$ electrode.

Catalyst	$R_{s}\left(\Omega ight)$	$R_{ct}\left(\Omega\right)$	Capacitor (F)
Co ₃ N@NC	2.202	11.96	0.0835
Co/Co ₃ N@NC	1.875	12.71	0.05307
Co/Co ₄ N@NC	2.222	6.725	0.07094

Table S2. Summary of EIS results.

Catalysts	Substrate Electrode	Electrolyte	Overpotential	Reference
Co/Co ₄ N@NC	Carbon paper	1.0 M KOH	262 mV@10 mA cm ⁻²	This work
			408 mV@100 mA cm ⁻²	
CoNi/NC-YS	Carbon fiber paper	1.0 M KOH	292 mV@10 mA cm ⁻²	[1]
Co-N doped CTP	Glassy carbon	0.1 M KOH	334 mV@10 mA cm ⁻²	[2]
Co@BNPCFs	Glassy carbon	1.0 M KOH	324 mV@10 mA cm ⁻²	[4]
Co-Fe binary	Carbon fiber paper	1.0 M KOH	369 mV@20 mA cm ⁻²	[5]
oxide			406 mV@100 mA cm ⁻²	
Co-NC@Mo ₂ C	Glassy carbon	1.0 M KOH	347 mV@10 mA cm ⁻²	[10]
NiMo-FG	Ni foam	1.0 M KOH	338 mV@10 mA cm ⁻²	[6]
GNiPy350N	Glassy carbon	0.5 M H ₂ SO ₄	320 mV@10 mA cm ⁻²	[7]
Fe-doped NiSe	Carbon paper	1.0 M KOH	282 mV@10 mA cm ⁻²	[8]
NSs/CNT				
NiFeP@NPC	Glassy carbon	1.0 M KOH	350 mV@10 mA cm ⁻²	[9]
Ru-G/CC	Carbon cloth	1.0 M KOH	270 mV@10 mA cm ⁻²	[3]

Table S3. Summary of results related to OER activity obtained for the various electrocatalysts.

References

- [1] G. Hou, X. Jia, H. Kang, X. Qiao, Y. Liu, Y. Li, X. Wu, W. Qin, *Appl. Catal. B: Environ.*, 2022, **315**, 121551.
- [2] J. Zhang, T. Zhang, J. Ma, Z. Wang, J. Liu, X. Gong, Carbon, 2021, 172, 556-568.
- [3] F. Guo, Z. Liu, J. Xiao, X. Zeng, C. Zhang, Y. Lin, P. Dong, T. Liu, Y. Zhang, M. Li, *Chem. Eng. J.*, 2022, 446, 137111.
- [4] W. Adamson, X. Bo, Y. Li, B. H. R. Suryanto, X. Chen, C. Zhao, *Catal. Today*, 2020, 351, 44-49.
- [5] Q. Liang, H. Jin, Z. Wang, Y. Xiong, S. Yuan, X. Zeng, D. He, S. Mu, *Nano Energy*, 2019, 57, 746-752.
- [6] S. Jeong, K. Hu, T. Ohto, Y. Nagata, H. Masuda, J. Fujita, Y. Ito, ACS Catal., 2020, 10, 792-799.
- [7] A. S. Souza, L. S. Bezerra, E. S. F. Cardoso, G. V. Fortunato, G. Maia, *J. Mater. Chem. A*, 2021, 9, 11255.
- [8] K. Chang, D. T. Tran, J. Wang, N. H. Kim, J. H. Lee, J. Mater. Chem. A, 2022, 10, 3102.
- [9] J. Wang, F. Giucci, Appl. Catal. B: Environ., 2019, 254, 292-299.
- [10] M. You, X. Du, X. Hou, Z. Wang, Y. Zhou, H. Ji, L. Zhang, Z. Zhang, S. Yi, D. Chen, *Appl. Catal. B: Environ.*, 2022, **317**, 121729.