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Analysis of heat transfer processes

Thermal analysis for the solar vapor desalination process is conducted, including the 

effective energy for evaporation (QEvap), conductive heat loss to bulk water (Q1), 

convective (Q2) and radiative (Q3) heat loss to the surroundings.

The energy dynamic equilibrium can be expressed as:

A α qSolar = QEvap+ Q1 + Q2+ Q3                                                       (S1) 

where A denotes the surface area of absorber facing the sun, α solar absorbance, and 

qSolar input solar flux

The conductive heat loss to bulk water (Q1) can be calculated through the 

temperature gradient in the underlying water:

Q1 = Cm(Tl1 -Tl2)                                               (S2)

where C represents the specific heat capacity of water (4.2 kJ K−1 kg−1), and m 

denotes the weight of water (g). The temperature gradient in the underlying water 

below the samples is measured by two embedded thermocouples under one sun (i.e., 

Tl1=17.3 °C and Tl2= 16.8 °C). In this work, m= 95 g, ΔT= 0.5 K. Consequently, the 

Q1 is ca. 2.53%.

The convective heat loss (Q2) to the adjacent environment can be calculated by 

Newton' law of cooling:

Q2 = A h (Ta - T∞)                                               (S3)

where h is convection heat transfer coefficient (assumed to be 5 W m−2 K−1), Ta (31.5 

°C) is the top surface temperature of absorber, and T∞ is the average side temperature 

of evaporator at a steady state condition under one sun. Since the light-absorbing 

material is surrounded by water layer and hot vapor, the adjacent temperature can be 

approximated as the vapor temperature (i.e., T∞ =Tvapor= 26.5°C). Consequently, the 

Q2 is calculated to be 25.0 W m−2, corresponding 2.57%.

The radiative heat loss (Q3) to the ambient environment can be calculated by 

Stefan-Boltzmann law:

Q3 = A ε σ(Ta
4 – Tvapor

4)                                          (S4)

where ε denotes the ε is the emissivity, and emissivity in this equation is supposed has 

a maximum emissivity of 1. σ is the Stefan-Boltzmann constant (5.669×10−8 W m−2 
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K−4). Consequently, the Q3 is calculated to be 31.59 W m−2, corresponding 3.25%.

Therefore, the heat loss of NMC-PCM-3 in the water evaporation is 8.35%.

Analysis of water evaporation enthalpy

To measure the water evaporation enthalpy, the water loss in the dark within 1 h was 

recorded, in which the evaporators receive the same energy from the environment to 

convert liquid water to vapor. Considering the known theoretical evaporation enthalpy

of liquid water (ca. 2434 J g−1), the enthalpy of blank-PCM-2 and NMC-PCM-2 is 

calculated by the formula:

UI = Eequmg =E0m0                                           (S5)

where UI in is the total energy absorbed from the environment per hour; E0 and m0 

refer to the water evaporation enthalpy (J g−1) and the mass loss (g) of water in 1 h 

without NMC-PCM-2 in the dark, respectively; mg means the water loss (g) of NMC-

PCM-2 while Eequ is the equivalent evaporation enthalpy (J g−1). 



S-4

Figures and tables

Figure S1. (a-b) Digital photographs of NMC-PCM evaporator for efficient solar 
steam generation. (c) Schematic structure of the 3D evaporator.
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Figure S2. SEM images of the air-laid paper.
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Figure S3. (a-c) SEM image of the NMC and (d) cross sectional SEM image of the 
NMC.
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Figure S4. HRTEM image of the NMC.
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Figure S5. EDX elemental mapping results of the NMC.
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Figure S6. XRD patterns of (a) the standard peaks for Ni-CAT-1 MOF crystals and (b) 
the Ni-CAT MOF. 
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Figure S7. XPS survey spectrum of the NMC.
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Figure S8. FTIR spectrum of the HHTP and NMC.
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Figure S9. Raman spectrum of the NMC.
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Figure S10. AFM scans of a 5 μm × 5 μm area of the NMC with a color bar 
displaying the film heights and (B) height distribution of the corresponding line 
segments.
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Figure S11. Reflectance and transmittance spectra of the wet/dry state (a) air-laid 
paper and (b) NMC in the wavelength range of 250-2500 nm.
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Figure S12. Thermogravimetric analysis (TGA) of the air-laid paper and NMC from 
30 to 600 ℃ in N2 atmosphere.
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Figure S13. Scheme of various patterning models.
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Figure S14. (a) Time-dependent mass change of NMC-PCM-1/2/3 under three sun 
illumination and (b) evaporation rate of after turning off the light source.
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Figure S15. (a) Evaporation rate of NMC-PCM-2, NMC-3-PCM-2 and NMC-5-PCM-
2 under 1 sun illumination and (b) after turning off the light source. (c) Temperature 
response profiles of NMC-3-PCM-2 and NMC-5-PCM-2 when the solar illumination 
turns on and off under 1 sun illumination, respectively.
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Figure S16. Temperature response profiles of NMC-PCM-1 when the solar 
illumination turns on and off under different irradiation of (a) 1, (b) 2, and (c) 3 sun, 
respectively.
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Figure S17. Temperature response profiles of NMC-PCM-2 when the solar 
illumination turns on and off under different irradiation of (a) 1, (b) 2, and (c) 3 sun, 
respectively.
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Figure S18. Energy balance and heat loss diagram of NMC-PCM-3 evaporator during 
the solar vapor generation process.
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Figure S19. (a) Raman spectrum of the wet-state NMC. (b) Concentration of Li+ in 
the condensed water of NCF and without evaporators under 1 Sun irradiation. 

Note: To further elucidate the reduction in the water evaporation enthalpy due to the 

formation of water cluster in the NMC system, we performed an experiment to 

demonstrate the evaporation of NMC confined water in the form of water cluster. In 

traditional evaporation systems, water evaporates in the form of water monomer. The 

water cluster has been demonstrated that could be vaporized by less energy compared 

with monomer in bulk water.[1-3] 

To prove water-cluster evaporation, we added LiCl, a non-volatile electrolyte salt into 

bulk water to be evaporated. This is because when evaporating as water cluster, Li+ is 

taken away. As shown in Figure S13, we prepared the LiCl solution with a 

concentration of 500 ppm, and evaporated it through traditional evaporation from bulk 

water and through solar-thermal evaporation at NCF surface. The Li+ concentration in 

the condensate evaporated using NMC (88.8 ppm) is greatly higher than that of the 

condensate evaporated by conventional evaporation (2.2 ppm). 

These results above indicate that evaporation of water using NMC is most likely to 

evaporate as the water cluster.
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Figure S20. (a) The location and (b) photograph of the place to collect hot spring 
water (Xianning, Hubei, China). (c) Photographs of the hot spring water and the 
condensed water.
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Figure S21. (a) The location and (b) photograph of the place to collect seawater 
(South China Sea, Shenzhen, China). (c) Photographs of the seawater and the 
condensed water.
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Figure S22. (a) The location and (b) photograph of the place to collect lake water 
(Shahu Lake, Wuhan, China). (c) Photographs of the lake water and the condensed 
water.
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Figure S23. (a) The location and (b) photograph of the place to collect rain and pond 
water Campus of Huazhong University of Science and Technology, Wuhan, China). 
(c) Photographs of the rain/pond water and the condensed water.
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Figure S24. (a) The location and (b) photograph of the place to collect snow water 
(Wanfo Lake, Anhui, China). (c) Photographs of the snow water and the condensed 
water.
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Figure S25. The ion rejection of (a) seawater, (b) lake water, (c) rainwater, (d) hot 
spring water, (e) snow water and (f) heavy metal ion solution undergoing the solar 
driven water purification under one sun illumination.
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Figure S26. (a) The ion rejection of heavy metal ion solution undergoing the solar 
energy-driven wastewater purification under one sun illumination. (b) Digital 
photographs of heavy metal ion solution undergoing the solar energy-driven 
wastewater purification.
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Figure S27. The experimental set-up for desalination–cultivation system.
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Figure S28. Digital photographs of wheat seeds grown at different times using 
desalinated seawater.
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Figure S29. (a)Evaporation rate cycle performance and (b) long-term stability test of 
NMC-PCM-3 under one sun illumination for 1 hour and then lights off.
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Figure S30. Evaporation rates of NMC-PCM-3 in NaCl solution with different 
concentrations.



S-34

Figure S31. Evaporation rates of MOF-based photothermal materials under 1 sun 
illumination.
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Table S1. The specific surface area of air-laid paper and NMC.
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Table S2. The comparison of the evaporation rate using various photothermal 
materials under one sun illumination.
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Table S3. The comparison of the evaporation rate using various MOF-based 
photothermal materials under one sun illumination.
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Table S4. An overall calculation of the cost of materials.
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