Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supplementary Information

Enhanced Hydrogen Production by Assisted Biomass Gasification Using Lithium Manganate as a Bifunctional Material

Carlos Hernández-Fontes, Nan Wang, Nayeli Gómez-Garduño and Heriberto Pfeiffer*

Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito exterior s/n, Cd. Universitaria, Del. Coyoacán, CP. 04510, Ciudad de México, Mexico

*Corresponding author; pfeiffer@materiales.unam.mx (H. Pfeiffer).

Figure S1. Characterization techniques of synthesized Li₂MnO₃; XRD (A) and Ads-des N₂ isotherm (B).

Figure S2. Thermogravimetric analyses from mixtures of different Li₂MnO₃ and glucose ratios: 5-95 (A), 25-75 (B), 50-50 (C), 75-25 (D) at 5 °C min⁻¹ in N₂ flow. Glucose sample was added in all the cases normalized in every case for the weight content in the sample.

Figure S3. FTIR gas-cell measurements of the gas products from pyrolysis of glucose (A) and LMO-G 25-75

(B) samples, as a function of temperature.

Figure S4. Gas chromatographs of the condensable volatile products of pyrolysis of glucose (A) and LMO-G 25-75 (B) samples, as well as the identification of the numbered peaks through mass spectrometry (C) and (D),

respectively.

Figure S5. Thermogravimetric analyses from mixtures of different biomass types: glucose (A) and cellulose (B), with or without Li₂MnO₃ at different heating rates, from 10 to 30 °C min⁻¹ in N₂ flow.